cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014115 Order of a certain Clifford group in dimension 2^n (the automorphism group of the Barnes-Wall lattice for n != 3).

Original entry on oeis.org

2, 8, 1152, 2580480, 89181388800, 48126558103142400, 409825748158189771161600, 55428899652335313894424707072000
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 129.

Crossrefs

Agrees with A014116 except at n=3.

Programs

  • Maple
    2^(n^2+n+1) * (2^n - 1) * product('2^(2*i)-1','i'=1..n-1);
  • Mathematica
    a[n_] := 2^(n^2+n+1)*(2^n - 1) * Product[4^i - 1, {i, 1, n-1}]; a[0] = 2; Array[a, 8, 0] (* Amiram Eldar, Jul 07 2025 *)
  • Python
    from math import prod
    def A014115(n): return 2 if n == 0 else ((1<Chai Wah Wu, Jun 20 2022

Formula

From Amiram Eldar, Jul 07 2025: (Start)
a(n) = 2^(n^2+n+1) * (2^n-1) * Product_{i=1..n-1} (2^(2*i)-1).
a(n) ~ c * 2^(2*n^2+n+1), where c = A100221. (End)