A014115 Order of a certain Clifford group in dimension 2^n (the automorphism group of the Barnes-Wall lattice for n != 3).
2, 8, 1152, 2580480, 89181388800, 48126558103142400, 409825748158189771161600, 55428899652335313894424707072000
Offset: 0
Keywords
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 129.
Links
- A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), arXiv:quant-ph/9608006, 1996-1997; IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
- G. E. Wall, On the Clifford collineation, transform and similarity groups. IV. An application to quadratic forms, Nagoya Math. J., 21 (1962), pp. 199-222.
- Index entries for sequences related to Barnes-Wall lattices.
Programs
-
Maple
2^(n^2+n+1) * (2^n - 1) * product('2^(2*i)-1','i'=1..n-1);
-
Mathematica
a[n_] := 2^(n^2+n+1)*(2^n - 1) * Product[4^i - 1, {i, 1, n-1}]; a[0] = 2; Array[a, 8, 0] (* Amiram Eldar, Jul 07 2025 *)
-
Python
from math import prod def A014115(n): return 2 if n == 0 else ((1<
Chai Wah Wu, Jun 20 2022
Formula
From Amiram Eldar, Jul 07 2025: (Start)
a(n) = 2^(n^2+n+1) * (2^n-1) * Product_{i=1..n-1} (2^(2*i)-1).
a(n) ~ c * 2^(2*n^2+n+1), where c = A100221. (End)