This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014126 N0523 #59 Jul 02 2025 16:01:55 %S A014126 1,2,5,9,15,23,34,47,64,84,108,136,169,206,249,297,351,411,478,551, %T A014126 632,720,816,920,1033,1154,1285,1425,1575,1735,1906,2087,2280,2484, %U A014126 2700,2928,3169,3422,3689,3969,4263,4571,4894,5231,5584,5952,6336,6736,7153,7586 %N A014126 Number of partitions of 2*n into at most 4 parts. %C A014126 Bisection of A001400. %C A014126 Molien series for 4-dimensional group of structure S_4 X C_2 and order 48, arising from complete weight enumerators of even trace-Hermitian self-dual additive codes over GF(4) containing the all-ones vector. %C A014126 Partial sums of A156040. - _Bob Selcoe_, Feb 08 2014 %D A014126 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %H A014126 Vincenzo Librandi, <a href="/A014126/b014126.txt">Table of n, a(n) for n = 0..1000</a> %H A014126 L. Colmenarejo, <a href="http://arxiv.org/abs/1604.00803">Combinatorics on several families of Kronecker coefficients related to plane partitions</a>, arXiv:1604.00803 [math.CO], 2016. See Table 1 p. 5. %H A014126 H. R. Henze and C. M. Blair, <a href="http://dx.doi.org/10.1021/ja01329a033">The number of structurally isomeric Hydrocarbons of the Ethylene Series</a>, J. Amer. Chem. Soc., 55 (2) (1933), 680-686. %H A014126 H. R. Henze and C. M. Blair, <a href="/A000631/a000631.pdf">The number of structurally isomeric Hydrocarbons of the Ethylene Series</a>, J. Amer. Chem. Soc., 55 (2) (1933), 680-685. (Annotated scanned copy) %H A014126 G. Nebe, E. M. Rains, and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006. %H A014126 <a href="/index/Mo#Molien">Index entries for Molien series</a> %H A014126 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,-1,0,2,-1). %F A014126 G.f.: (1+x^2)/((1-x)^2*(1-x^2)*(1-x^3)). - _James Sellers_ %F A014126 a(n) = (1/72) * (4*n^3 + 30*n^2 + 72*n + 55 + 8*A049347(n) + 9*(-1)^n ). - _Ralf Stephan_, Aug 15 2013 %F A014126 E.g.f.: exp(-x)*(27 + 3*exp(2*x)*(55 + 106*x + 42*x^2 + 4*x^3) + 8*exp(x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/216. - _Stefano Spezia_, Apr 05 2023 %p A014126 with(combstruct): seq(count(Partition((2*n+4)), size=4), n=0..50); # _Zerinvary Lajos_, Mar 28 2008 %t A014126 CoefficientList[Series[(1 + x^2) / ((1 - x)^2 (1 - x^2) (1 - x^3)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Aug 15 2013 *) %t A014126 LinearRecurrence[{2,0,-1,-1,0,2,-1},{1,2,5,9,15,23,34},50] (* _Harvey P. Dale_, Aug 31 2015 *) %o A014126 (PARI) a(n)=(4*n^3+30*n^2+72*n+55+8*[1,-1,0][(n%3)+1]+9*(-1)^n)/72 %Y A014126 Cf. A000631, A001400, A014125, A049347, A092498, A156040. %K A014126 nonn,easy %O A014126 0,2 %A A014126 _N. J. A. Sloane_