cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014138 Partial sums of (Catalan numbers starting 1, 2, 5, ...).

This page as a plain text file.
%I A014138 #149 Dec 30 2024 04:17:38
%S A014138 0,1,3,8,22,64,196,625,2055,6917,23713,82499,290511,1033411,3707851,
%T A014138 13402696,48760366,178405156,656043856,2423307046,8987427466,
%U A014138 33453694486,124936258126,467995871776,1757900019100
%N A014138 Partial sums of (Catalan numbers starting 1, 2, 5, ...).
%C A014138 Number of paths starting from the root in all ordered trees with n+1 edges (a path is a nonempty tree with no vertices of outdegree greater than 1). Example: a(2)=8 because the five trees with three edges have altogether 1+0+2+2+3=8 paths hanging from the roots. - _Emeric Deutsch_, Oct 20 2002
%C A014138 a(n) is the sum of the mean maximal pyramid size over all Dyck (n+1)-paths. Also, a(n) = sum of the mean maximal sawtooth size over all Dyck (n+1)-paths. A pyramid (resp. sawtooth) in a Dyck path is a subpath of the form U^k D^k (resp. (UD)^k) with k>=1 and k is its size. For example, the maximal pyramids in the Dyck path uUUDD|UD|UDdUUDD are indicated by uppercase letters (and separated by a vertical bar). Their sizes are 2,1,1,2 left to right and the mean maximal pyramid size of the path is 6/4 = 3/2. Also, the mean maximal sawtooth size of this path is (1+2+1)/3 = 4/3. - _David Callan_, Jun 07 2006
%C A014138 p^2 divides a(p-1) for prime p of form p=6k+1 (A002476(k)). - _Alexander Adamchuk_, Jul 03 2006
%C A014138 p^2 divides a(p^2-1) for prime p>3. p^2 divides a(p^3-1) for prime p=7,13,19,... prime p in the form p=6k+1. - _Alexander Adamchuk_, Jul 03 2006
%C A014138 Row sums of triangle A137614. - _Gary W. Adamson_, Jan 30 2008
%C A014138 Equals INVERTi transform of A095930: (1, 4, 15, 57, 220, 859, ...). - _Gary W. Adamson_, May 15 2009
%C A014138 a(n) < A000108(n+1), therefore A176137(n) <= 1. - _Reinhard Zumkeller_, Apr 10 2010
%C A014138 a(n) is also the sum of the numbers in Catalan's triangle (A009766) from row 0 to row n. - _Patrick Labarque_, Jul 27 2010
%C A014138 Equals the Catalan sequence starting (1, 1, 2, ...) convolved with A014137 starting (1, 2, 4, 9, ...). - _Gary W. Adamson_, May 20 2013
%C A014138 p divides a((p-3)/2) for primes {11,23,47,59,...} = A068231 primes congruent to 11 mod 12. - _Alexander Adamchuk_, Dec 27 2013
%C A014138 a(n) is the number of parking functions of size n avoiding the patterns 132, 213, and 231. - _Lara Pudwell_, Apr 10 2023
%H A014138 G. C. Greubel, <a href="/A014138/b014138.txt">Table of n, a(n) for n = 0..1000</a>(terms 0 to 200 computed by T. D. Noe)
%H A014138 Ayomikun Adeniran and Lara Pudwell, <a href="https://doi.org/10.54550/ECA2023V3S3R17">Pattern avoidance in parking functions</a>, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
%H A014138 Paul Barry, <a href="http://arxiv.org/abs/1107.5490">Invariant number triangles, eigentriangles and Somos-4 sequences</a>, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
%H A014138 S. B. Ekhad and M. Yang, <a href="http://sites.math.rutgers.edu/~zeilberg/tokhniot/oMathar1maple12.txt">Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences</a>, (2017)
%H A014138 Ângela Mestre and José Agapito, <a href="https://www.emis.de/journals/JIS/VOL22/Agapito/mestre8.html">A Family of Riordan Group Automorphisms</a>, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
%H A014138 Kevin Topley, <a href="http://arxiv.org/abs/1601.04223">Computationally Efficient Bounds for the Sum of Catalan Numbers</a>, arXiv:1601.04223 [math.CO], 2016.
%F A014138 a(n) = A014137(n)-1.
%F A014138 G.f.: (1-2*x-sqrt(1-4x))/(2x(1-x)) = (C(x)-1)/(1-x) where C(x) is the generating function for the Catalan numbers. - Rocio Blanco, Apr 02 2007
%F A014138 a(n) = Sum_{k=1..n} A000108(k). - _Alexander Adamchuk_, Jul 03 2006
%F A014138 Binomial transform of A005554: (1, 2, 3, 6, 13, 30, 72, ...). - _Gary W. Adamson_, Nov 23 2007
%F A014138 D-finite with recurrence: (n+1)*a(n) + (1-5n)*a(n-1) + 2*(2n-1)*a(n-2) = 0. - _R. J. Mathar_, Dec 14 2011
%F A014138 Equals the Catalan sequence starting (1, 1, 2, ...) convolved with A014137 starting (1, 2, 4, 9, ...). - _Gary W. Adamson_, May 20 2013
%F A014138 G.f.: 1/x - G(0)/(1-x)/x, where G(k) = 1 - x/(1 - x/(1 - x/(1 - x/G(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Jul 17 2013
%F A014138 G.f.: 1/x - T(0)/(2*x*(1-x)), where T(k) = 2*x*(2*k+1)+ k+2 - 2*x*(k+2)*(2*k+3)/T(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 27 2013
%F A014138 a(n) ~ 2^(2*n+2)/(3*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Dec 10 2013
%F A014138 a(n) = Sum_{i+j<n} C(i)*C(j), where C = A000108. - _Yuchun Ji_, Jan 10 2019
%F A014138 E.g.f.: exp(2*x)*(BesselI(0, 2*x)/2 - BesselI(1, 2*x)) + exp(x)*(3/2*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx - 1/2). - _Mélika Tebni_, Aug 31 2024
%p A014138 a:=n->sum((binomial(2*j,j)/(j+1)),j=1..n): seq(a(n), n=0..24); # _Zerinvary Lajos_, Dec 01 2006
%p A014138 # Second program:
%p A014138 A014138 := series(exp(2*x)*(BesselI(0, 2*x)/2 - BesselI(1, 2*x)) + exp(x)*(3/2*int(BesselI(0, 2*x)*exp(x), x) - 1/2), x = 0, 26):
%p A014138 seq(n!*coeff(A014138, x, n), n = 0 .. 24); # _Mélika Tebni_, Aug 31 2024
%t A014138 Table[Sum[(2k)!/k!/(k+1)!,{k,1,n}],{n,1,70}] (* _Alexander Adamchuk_, Jul 03 2006 *)
%t A014138 Join[{0},Accumulate[CatalanNumber[Range[30]]]] (* _Harvey P. Dale_, Jan 25 2013 *)
%t A014138 CoefficientList[Series[(1 - 2 x - (1 - 4 x)^(1/2))/(2 x (1 - x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Jun 21 2015 *)
%t A014138 a[0] := 0; a[n_] := Sum[CatalanNumber[k], {k, 1, n}]; Table[a[n], {n,0,50}] (* _G. C. Greubel_, Jan 14 2017 *)
%o A014138 (PARI) Vec((1-2*x-(1-4*x)^(1/2))/(2*x*(1-x))) \\ _Charles R Greathouse IV_, Feb 11 2011
%o A014138 (Haskell)
%o A014138 a014138 n = a014138_list !! n
%o A014138 a014138_list = scanl1 (+) a000108_list  -- _Reinhard Zumkeller_, Mar 01 2013
%o A014138 (Python)
%o A014138 from __future__ import division
%o A014138 A014138_list, b, s = [0], 1, 0
%o A014138 for n in range(1,10**2):
%o A014138     s += b
%o A014138     A014138_list.append(s)
%o A014138     b = b*(4*n+2)//(n+2) # _Chai Wah Wu_, Jan 28 2016
%Y A014138 Cf. A000108, A002476, A005554, A068231, A095930, A137614, A155587.
%K A014138 nonn,nice
%O A014138 0,3
%A A014138 _N. J. A. Sloane_
%E A014138 Edited by _Max Alekseyev_, Sep 13 2009 (including adding an initial 0)
%E A014138 Definition edited by _N. J. A. Sloane_, Oct 03 2009