This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014144 #57 May 12 2025 12:49:46 %S A014144 0,1,3,7,17,51,205,1079,6993,53227,462341,4500255,48454969,571411283, %T A014144 7321388397,101249656711,1502852293025,23827244817339,401839065437653, %U A014144 7182224591785967,135607710526966281,2696935204638786595,56349204870460046909,1234002202313888987223 %N A014144 Apply partial sum operator twice to factorials. %C A014144 Equals row sums of triangle A137948 starting with offset 1. - _Gary W. Adamson_, Feb 28 2008 %C A014144 If s(n) is a sequence defined as s(0)=a, s(1)=b, s(n) = n*(s(n-1) - s(n-2)), n>1, then s(n) = n*b - (a(n)-1)*a. - _Gary Detlefs_, Feb 23 2011 %H A014144 G. C. Greubel, <a href="/A014144/b014144.txt">Table of n, a(n) for n = 0..250</a> %H A014144 G. V. Milovanovich and A. Petojevich, <a href="http://www.math.bas.bg/infres/MathBalk/MB-16/MB-16-113-130.pdf">Generalized Factorial Functions, Numbers and Polynomials</a>, Math. Balkanica, Vol. 16 (2002), Fasc. 1-4. %H A014144 Alexsandar Petojevic, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL5/Petojevic/petojevic5.html">The Function vM_m(s; a; z) and Some Well-Known Sequences</a>, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7. %H A014144 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a> %F A014144 a(n) = (n-1) * !n - n! + 1, !n = Sum_{k=0..n-1} k!. - Joe Keane (jgk(AT)jgk.org) %F A014144 a(n) = convolution(A000142, A001477). - _Peter Luschny_, Jan 21 2012 %F A014144 G.f.: x*G(0)/(1-x)^2, where G(k)= 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 24 2013 %p A014144 b:= proc(n) option remember; `if`(n<0, [0$2], %p A014144 (q-> (f-> [f[2]+q, q]+f)(b(n-1)))(n!)) %p A014144 end: %p A014144 a:= n-> b(n-1)[1]: %p A014144 seq(a(n), n=0..25); # _Alois P. Heinz_, Feb 13 2022 %t A014144 Join[{0}, Accumulate@ Accumulate@ (Range[0, 19]!)] (* _Robert G. Wilson v_ *) %t A014144 Join[{0},Nest[Accumulate[#]&,Range[0,25]!,2]] (* _Harvey P. Dale_, May 12 2025 *) %o A014144 (PARI) a(n)=(n-1)*round(n!/exp(1))-n!+1 \\ _Charles R Greathouse IV_, Feb 24 2011 %o A014144 (Magma) [(k-1)*(&+[Factorial(j): j in [0..k-1]]) - Factorial(k) + 1: k in [1..25]]; // _G. C. Greubel_, Sep 03 2018 %Y A014144 Cf. A000142, A003422, A137948. %K A014144 nonn,easy %O A014144 0,3 %A A014144 _N. J. A. Sloane_