This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014160 #34 Mar 20 2023 17:37:47 %S A014160 1,4,11,25,51,96,171,291,478,762,1185,1803,2693,3956,5727,8182,11552, %T A014160 16134,22313,30579,41559,56045,75039,99796,131891,173282,226405, %U A014160 294270,380595,489945,627924,801374,1018644 %N A014160 Apply partial sum operator thrice to partition numbers. %C A014160 A014160 convolved with A010815 = A000217, the triangular numbers. - _Gary W. Adamson_, Nov 09 2008 %C A014160 Unordered partitions of n into parts where the part 1 comes in 4 colors. - _Peter Bala_, Dec 23 2013 %C A014160 From _Omar E. Pol_, Mar 01 2023: (Start) %C A014160 Partial sums of A014153. %C A014160 Convolution of A000070 and A000027. %C A014160 Convolution of A000041 and the positive terms of A000217. %C A014160 Convolution of A002865 and the positive terms of A000292. (End) %H A014160 Vaclav Kotesovec, <a href="/A014160/b014160.txt">Table of n, a(n) for n = 0..10000</a> %F A014160 From _Peter Bala_, Dec 23 2013: (Start) %F A014160 O.g.f.: 1/(1 - x)^3 * Product_{k >= 1} 1/(1 - x^k). %F A014160 a(n-1) + a(n-2) = Sum_{parts k in all partitions of n} J_2(k), where J_2(n) is the Jordan totient function A007434(n). (End) %F A014160 a(n) ~ 3*sqrt(n) * exp(Pi*sqrt(2*n/3)) / (sqrt(2)*Pi^3). - _Vaclav Kotesovec_, Oct 30 2015 %F A014160 a(n) = Sum_{k=0..n} A014153(k). - _Sean A. Irvine_, Oct 14 2018 %t A014160 nmax = 50; CoefficientList[Series[1/((1-x)^3 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 30 2015 *) %Y A014160 Cf. A000041, A000070, A014153. %Y A014160 Cf. A010815, A000217. - _Gary W. Adamson_, Nov 09 2008 %Y A014160 Column k=4 of A292508. %Y A014160 Cf. A000027, A002865, A000292. %K A014160 nonn %O A014160 0,2 %A A014160 _N. J. A. Sloane_