cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014300 Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.

This page as a plain text file.
%I A014300 #122 Nov 25 2023 07:35:07
%S A014300 1,2,7,24,86,314,1163,4352,16414,62292,237590,909960,3497248,13480826,
%T A014300 52097267,201780224,783051638,3044061116,11851853042,46208337584,
%U A014300 180383564228,704961896036,2757926215742,10799653176704,42326626862636,166021623024584,651683311373788
%N A014300 Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.
%C A014300 Also total number of blocks of odd size in all Catalan(n) possible noncrossing partitions of [n].
%C A014300 Convolution of the sequence of central binomial coefficients 1,2,6,20,70,... (A000984) and of the sequence of Fine numbers 1,0,1,2,6,18,... (A000957).
%C A014300 Row sums of A119307. - _Paul Barry_, May 13 2006
%C A014300 Hankel transform is A079935. - _Paul Barry_, Jul 17 2009
%C A014300 Also for n>=1 the number of unimodal functions f:[n]->[n] with f(i)<>f(i+1). a(3) = 7: [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,3,1], [2,3,2], [3,2,1]. - _Alois P. Heinz_, May 23 2013
%C A014300 Also, number of sets of n rational numbers on [0,1) such that if x belongs to the set, the fractional part of 2x also belongs to it. - _Jianing Song_ and _Andrew Howroyd_, May 18 2018
%C A014300 Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function ((-1)^(n + 1) + 1)/2 for n > 0. Then A(n, n) equals a(n) for all n > 0. - _John M. Campbell_, Jan 20 2019
%C A014300 The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p >= 3 and positive integers n and k. - _Peter Bala_, Jan 07 2022
%H A014300 Alois P. Heinz, <a href="/A014300/b014300.txt">Table of n, a(n) for n = 1..500</a>
%H A014300 Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
%H A014300 Hacène Belbachir and Abdelghani Mehdaoui, <a href="https://lrecits.usthb.dz/6.5.pdf">Diagonal sums in Pascal pyramid (1, 2, r)</a>, Les Annales RECITS (2019) Vol. 6, 45-52.
%H A014300 N. Dershowitz and S. Zaks, <a href="http://dx.doi.org/10.1016/0012-365X(86)90120-2">Ordered trees and non-crossing partitions</a>, Discrete Math., 62 (1986), 215-218.
%H A014300 Emeric Deutsch and L. Shapiro, <a href="http://dx.doi.org/10.1016/S0012-365X(01)00121-2">A survey of the Fine numbers</a>, Discrete Math., 241 (2001), 241-265.
%H A014300 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A014300 a(n) = (binomial(2*n, n) + A000957(n))/3; [simplified by _Alexander Burstein_, Nov 24 2023]
%F A014300 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k-1). - _Vladeta Jovovic_, Aug 28 2002
%F A014300 G.f.: 2*z/(1-4*z+(1+2*z)*sqrt(1-4*z)).
%F A014300 a(n) = Sum_{j=0..floor((n-1)/2)} binomial(2*n-2*j-2, n-1).
%F A014300 2*a(n) + a(n-1) = (3*n-1)*Catalan(n-1). - _Vladeta Jovovic_, Dec 03 2004
%F A014300 a(n) = (-1)^n*Sum_{i=0..n} Sum_{j=n..2*n} (-1)^(i+j)*binomial(j, i). - _Benoit Cloitre_, Jun 18 2005
%F A014300 a(n) = Sum_{k=0..n} C(2*k,n) [offset 0]. - _Paul Barry_, May 13 2006
%F A014300 a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+k-1,k-1). - _Paul Barry_, Jul 18 2006
%F A014300 From _Paul Barry_, Jul 17 2009: (Start)
%F A014300 a(n) = Sum_{k=0..n} C(2*n-k,n-k)*(1+(-1)^k)/2.
%F A014300 a(n) = Sum_{k=0..n} C(n+k,k)*(1+(-1)^(n-k))/2. (End)
%F A014300 a(n) is the coefficient of x^(n+1)*y^(n+1) in 1/(1- x^2*y/((1-2*x)*(1-y))). - _Ira M. Gessel_, Oct 30 2012
%F A014300 a(n) = -binomial(2*n,n-1)*hyper2F1([1,2*n+1],[n+2], 2). - _Peter Luschny_, Jul 25 2014
%F A014300 a(n) = [x^n] x/((1 - x^2)*(1 - x)^n). - _Ilya Gutkovskiy_, Oct 25 2017
%F A014300 a(n) ~ 4^n / (3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 25 2017
%F A014300 D-finite with recurrence: 2*n*a(n) +(-3*n-4)*a(n-1) +2*(-9*n+19)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - _R. J. Mathar_, Feb 20 2020
%F A014300 a(n) = A333564(n)/2^n. - _Peter Bala_, Apr 09 2020
%F A014300 a(n) = (1/2)*(binomial(2*n,n) - A072547(n)). - _Peter Bala_, Mar 28 2023
%p A014300 a:= proc(n) a(n):= `if`(n<3, n, ((12-40*n+21*n^2) *a(n-1)+
%p A014300        2*(3*n-1)*(2*n-3) *a(n-2))/ (2*(3*n-4)*n))
%p A014300     end:
%p A014300 seq(a(n), n=1..30);  # _Alois P. Heinz_, Oct 30 2012
%t A014300 Rest[CoefficientList[Series[2x/(1-4x+(1+2x)Sqrt[1-4x]),{x,0,40}],x]]  (* _Harvey P. Dale_, Apr 25 2011 *)
%t A014300 a[n_] := Sum[Binomial[2k, n-1], {k, 0, n-1}]; Array[a, 30] (* _Jean-François Alcover_, Dec 25 2015, after _Paul Barry_ *)
%o A014300 (PARI) a(n) = n--; sum(k=0, n, binomial(2*k,n)); \\ _Michel Marcus_, May 18 2018
%o A014300 (Magma) [(&+[(-1)^(n-k)*Binomial(n+k-1, k-1): k in [0..n]]): n in [1..30]]; // _G. C. Greubel_, Feb 19 2019
%o A014300 (Sage) [sum((-1)^(n-k)*binomial(n+k-1, k-1) for k in (0..n)) for n in (1..30)] # _G. C. Greubel_, Feb 19 2019
%o A014300 (Python)
%o A014300 from itertools import count, islice
%o A014300 def A014300_gen(): # generator of terms
%o A014300     yield from (1,2)
%o A014300     a, c = 1, 1
%o A014300     for n in count(1):
%o A014300         yield (a:=(3*n+5)*(c:=c*((n<<2)+2)//(n+2))-a>>1)
%o A014300 A014300_list = list(islice(A014300_gen(),20)) # _Chai Wah Wu_, Apr 26 2023
%Y A014300 Cf. A059481, A000957, A000984, A072547, A119259, A119307, A079935, A333564.
%K A014300 nonn,nice,easy
%O A014300 1,2
%A A014300 _Emeric Deutsch_