cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014301 Number of internal nodes of even outdegree in all ordered rooted trees with n edges.

This page as a plain text file.
%I A014301 #80 Aug 04 2024 06:38:38
%S A014301 0,1,3,11,40,148,553,2083,7896,30086,115126,442118,1703052,6577474,
%T A014301 25461493,98759971,383751472,1493506534,5820778858,22714926826,
%U A014301 88745372992,347087585824,1358789148058,5324148664846,20878676356240,81937643449468,321786401450268
%N A014301 Number of internal nodes of even outdegree in all ordered rooted trees with n edges.
%C A014301 Number of protected vertices in all ordered rooted trees with n edges. A protected vertex in an ordered tree is a vertex at least 2 edges away from its leaf descendants. - _Emeric Deutsch_, Aug 20 2008
%C A014301 1,3,11,... gives the diagonal sums of A111418. Hankel transform of a(n) is A128834. Hankel transform of a(n+1) is A187340. - _Paul Barry_, Mar 08 2011
%C A014301 a(n) = A035317(2*n-1,n-1) for n > 0. - _Reinhard Zumkeller_, Jul 19 2012
%C A014301 Apparently the number of peaks in all Dyck paths of semilength n+1 that are the same height as the preceding peak. - _David Scambler_, Apr 22 2013
%C A014301 Define an infinite triangle by T(n,0)=A001045(n) (the first column) and T(r,c) = Sum_{k=c-1..r} T(k,c-1) (the sum of all the terms in the preceding column down to row r). Then T(n,n)=a(n+1). The triangle is 0; 1,1; 1,2,3; 3,5,8,11; 5,10,18,29,40; 11,21,39,68,108,148;... Example: T(5,2)=39=the sum of the terms in column 1 from T(1,1) to T(5,1), namely, 1+2+5+10+21. - _J. M. Bergot_, May 17 2013
%C A014301 Also for n>=1 the number of unimodal functions f:[n]->[n] with f(1)<>1 and f(i)<>f(i+1). a(4) = 11: [2,3,2,1], [2,3,4,1], [2,3,4,2], [2,3,4,3], [2,4,2,1], [2,4,3,1], [2,4,3,2], [3,4,2,1], [3,4,3,1], [3,4,3,2], [4,3,2,1]. - _Alois P. Heinz_, May 23 2013
%H A014301 G. C. Greubel, <a href="/A014301/b014301.txt">Table of n, a(n) for n = 1..1000</a>
%H A014301 Gi-Sang Cheon and Louis W. Shapiro, <a href="http://dx.doi.org/10.1016/j.aml.2007.07.001">Protected points in ordered trees,</a> Appl. Math. Letters, 21, 2008, 516-520.
%H A014301 Sergi Elizalde, <a href="https://arxiv.org/abs/2008.05669">Symmetric peaks and symmetric valleys in Dyck paths</a>, arXiv:2008.05669 [math.CO], 2020, Corollary 3.4.
%H A014301 Torleiv Kløve, <a href="http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-376.pdf">Spheres of Permutations under the Infinity Norm - Permutations with limited displacement</a>, Reports in Informatics, Department of Informatics, University of Bergen, Norway, no. 376, November 2008.
%H A014301 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A014301 a(n) = binomial(2*n-1, n)/3 - A000957(n)/3;
%F A014301 a(n) = (1/2)*Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k). - _Vladeta Jovovic_, Aug 28 2002
%F A014301 From _Emeric Deutsch_, Jan 26 2004: (Start)
%F A014301 G.f.: (1-2*z-sqrt(1-4*z))/(3*sqrt(1-4*z)-1+4*z).
%F A014301 a(n) = [A026641(n) - A026641(n-1)]/3 for n>1. (End)
%F A014301 a(n) = (1/2)*Sum_{j=0..floor(n/2)} binomial(2n-2j-2, n-2).
%F A014301 a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+k,k-1). - _Paul Barry_, Jul 18 2006
%F A014301 D-finite with recurrence: 2*n*a(n) +(-9*n+8)*a(n-1) +(3*n-16)*a(n-2) +2*(2*n-5)*a(n-3)=0. - _R. J. Mathar_, Dec 03 2012
%t A014301 Rest[CoefficientList[Series[(1-2*x-Sqrt[1-4*x])/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 50}], x]] (* _G. C. Greubel_, Jan 15 2018 *)
%o A014301 (PARI) x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(3*sqrt(1-4*x)-1+4*x)) \\ _G. C. Greubel_, Jan 15 2018
%o A014301 (Magma) [(1/2)*(&+[(-1)^(n-k)*Binomial(n+k-1,k): k in [0..n]]): n in [1..30]]; // _G. C. Greubel_, Jan 15 2018
%o A014301 (Python)
%o A014301 from itertools import count, islice
%o A014301 def A014301_gen(): # generator of terms
%o A014301     yield from (0,1)
%o A014301     a, b, c = 0, 3, 1
%o A014301     for n in count(1):
%o A014301         yield ((b:=b*((n<<1)+3<<1)//(n+2))-(a:=(c:=c*((n<<2)+2)//(n+2))-a>>1))//3
%o A014301 A014301_list = list(islice(A014301_gen(),20)) # _Chai Wah Wu_, Apr 27 2023
%Y A014301 Cf. A059481, A026641, A143362, A143363.
%K A014301 nonn
%O A014301 1,3
%A A014301 _Emeric Deutsch_