A014312 Numbers with exactly 4 ones in binary expansion.
15, 23, 27, 29, 30, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 71, 75, 77, 78, 83, 85, 86, 89, 90, 92, 99, 101, 102, 105, 106, 108, 113, 114, 116, 120, 135, 139, 141, 142, 147, 149, 150, 153, 154, 156, 163, 165, 166, 169, 170, 172, 177, 178, 180, 184, 195, 197
Offset: 1
Links
- T. D. Noe and Ivan Neretin, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Robert Baillie, Summing the curious series of Kempner and Irwin, arXiv:0806.4410 [math.CA], 2008-2015. See p. 18 for Mathematica code irwinSums.m.
Crossrefs
Programs
-
Mathematica
Select[ Range[ 180 ], (Count[ IntegerDigits[ #, 2 ], 1 ]==4)& ] (* Olivier Gérard *)
-
PARI
for(n=0,10^3,if(hammingweight(n)==4,print1(n,", "))); \\ Joerg Arndt, Mar 04 2014
-
PARI
print1(t=15); for(i=2, 50, print1(", "t=A057168(t))) \\ M. F. Hasler, Aug 27 2014
-
Perl
$N = 4; my $vector = 2 ** $N - 1; # first key (15) for (1..100) { print "$vector, "; my ($v, $d) = ($vector, 0); until ($v & 1 or !$v) { $d = ($d << 1)|1; $v >>= 1 } $vector += $d + 1 + (($v ^ ($v + 1)) >> 2); # next key } # Ruud H.G. van Tol, Mar 02 2014
-
Python
A014312_list = [2**a+2**b+2**c+2**d for a in range(3,6) for b in range(2,a) for c in range(1,b) for d in range(c)] # Chai Wah Wu, Jan 24 2021
-
Python
from itertools import islice def A014312_gen(): # generator of terms yield (n:=15) while True: yield (n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b) A014312_list = list(islice(A014312_gen(),20)) # Chai Wah Wu, Mar 10 2025
-
Rust
pub const fn next_choice(value: usize) -> usize { // Passing a term will return the next number in the sequence let zeros = value.trailing_zeros(); let ones = (value >> zeros).trailing_ones(); value + (1 << zeros) + (1 << (ones - 1)) - 1 } // Andrew Bennett, Jan 07 2022
Formula
a(n+1) = A057168(a(n)). - M. F. Hasler, Aug 27 2014
a(n) = 2^A194882(n-1) + 2^A194883(n-1) + 2^A194884(n-1) + 2^A127324(n-1). - Ridouane Oudra, Sep 06 2020
Sum_{n>=1} 1/a(n) = 1.399770961748474333075618147113153558623203796657745865012742162098738541849... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Feb 14 2022
Extensions
Extension by Olivier Gérard