cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014335 Exponential convolution of Fibonacci numbers with themselves (divided by 2).

This page as a plain text file.
%I A014335 #49 Jan 06 2023 02:07:17
%S A014335 0,0,1,3,11,35,115,371,1203,3891,12595,40755,131891,426803,1381171,
%T A014335 4469555,14463795,46805811,151466803,490156851,1586180915,5132989235,
%U A014335 16610702131,53753361203,173949530931,562912506675,1821623137075,5894896300851,19076285150003
%N A014335 Exponential convolution of Fibonacci numbers with themselves (divided by 2).
%C A014335 It can be noticed that A014335/A011782 is an "autosequence", that is a sequence which is identical to its inverse binomial transform, except for alternating signs. - _Jean-François Alcover_, Jun 15 2016
%H A014335 Alois P. Heinz, <a href="/A014335/b014335.txt">Table of n, a(n) for n = 0..1000</a>
%H A014335 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,2,-4).
%F A014335 a(n) = A014334(n)/2.
%F A014335 G.f.: x^2/((1-x)*(1-2*x-4*x^2)). - _Vladeta Jovovic_, Mar 05 2003
%F A014335 E.g.f.: exp(x)*(cosh(sqrt(5)*x)-1)/5. - _Vladeta Jovovic_, Sep 01 2004
%F A014335 From _Benoit Cloitre_, Sep 25 2004: (Start)
%F A014335 a(n+1) = Sum_{i=0..n} A000045(i)*2^(i-1).
%F A014335 a(n) = (1/5)*(2^(n-1)*A000032(n) - 1). (End)
%F A014335 a(n) = 2*a(n-1) + 4*a(n-2) + 1, a(0)=0; a(1)=0. - _Zerinvary Lajos_, Dec 14 2008
%F A014335 G.f.: G(0)*x^2/(2*(1-x)^2), where G(k)= 1 + 1/(1 - x*(5*k-1)/(x*(5*k+4) - 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 26 2013
%F A014335 a(n) = (A203579(n) - 2)/5. - _Vladimir Reshetnikov_, Oct 06 2016
%p A014335 a[0]:=0:a[1]:=0:for n from 2 to 50 do a[n]:=2*a[n-1]+4*a[n-2]+1 od: seq(a[n], n=0..29); # _Zerinvary Lajos_, Dec 14 2008
%p A014335 # second Maple program:
%p A014335 a:= n-> (<<0|1|0>, <0|0|1>, <-4|2|3>>^n)[1,3]:
%p A014335 seq(a(n), n=0..30);  # _Alois P. Heinz_, Oct 04 2016
%t A014335 LinearRecurrence[{3,2,-4}, {0,0,1}, 41] (* _Vladimir Joseph Stephan Orlovsky_, Feb 01 2011 *)
%t A014335 Table[(2^n LucasL[n] - 2)/10, {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 06 2016 *)
%o A014335 (Magma) [(2^n*Lucas(n)-2)/10: n in [0..40]]; // _G. C. Greubel_, Jan 06 2023
%o A014335 (SageMath) [(2^n*lucas_number2(n,1,-1) -2)/10 for n in range(41)] # _G. C. Greubel_, Jan 06 2023
%Y A014335 Cf. A000032, A000045, A014334, A081057, A203579.
%Y A014335 Cf. (partial sums of) A063727.
%Y A014335 Column k=2 of A346415.
%K A014335 nonn,easy
%O A014335 0,4
%A A014335 _N. J. A. Sloane_