This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014368 #13 Jul 08 2025 05:37:45 %S A014368 20,21,30,31,32,40,41,42,43,50,51,52,53,54,60,61,62,63,64,65,70,71,72, %T A014368 73,74,75,76,80,81,82,83,84,85,86,87,90,91,92,93,94,95,96,97,98,100, %U A014368 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,1110,120,121,122,123 %N A014368 a(n) = bc, where n = C(b,2)+C(c,1), b>c>=0. %C A014368 The definition means: write n as the highest possible triangular number plus some nonnegative rest (so b is one plus the index of the greedy inverse of n in A000217), and concatenate the two decimal expansions of b and the rest. - _R. J. Mathar_, May 25 2023 %D A014368 W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge, 1993, p. 158. %p A014368 invA000217 := proc(n) %p A014368 local i; %p A014368 for i from 1 do %p A014368 if binomial(i+1,2) > n then %p A014368 return i; %p A014368 end if; %p A014368 end do: %p A014368 end proc: %p A014368 A014368 := proc(n) %p A014368 local b,c; %p A014368 b := invA000217(n) ; %p A014368 c := n-binomial(b,2) ; %p A014368 digcatL([b,c]) ; %p A014368 end proc: %p A014368 seq(A014368(n),n=1..70) ; # _R. J. Mathar_, May 25 2023 %K A014368 nonn,easy,base %O A014368 1,1 %A A014368 _N. J. A. Sloane_