This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014369 #16 Jul 08 2025 05:37:51 %S A014369 310,320,321,410,420,421,430,431,432,510,520,521,530,531,532,540,541, %T A014369 542,543,610,620,621,630,631,632,640,641,642,643,650,651,652,653,654, %U A014369 710,720,721,730,731,732,740,741,742,743,750,751,752,753 %N A014369 a(n) = bcd, where n = C(b,3)+C(c,2)+C(d,1), b>c>d>=0. %C A014369 In the definition bcd means concatenation not multiplication. - _Sean A. Irvine_, Oct 18 2018 %D A014369 W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge, 1993, p. 158. %p A014369 invA000292 := proc(n) %p A014369 local i; %p A014369 for i from 1 do %p A014369 if binomial(i+1,3) > n then %p A014369 return i; %p A014369 end if; %p A014369 end do: %p A014369 end proc: %p A014369 invA000217 := proc(n) %p A014369 local i; %p A014369 for i from 1 do %p A014369 if binomial(i+1,2) > n then %p A014369 return i; %p A014369 end if; %p A014369 end do: %p A014369 end proc: %p A014369 A014369 := proc(n) %p A014369 local b,c,d ; %p A014369 b := invA000292(n) ; %p A014369 c := invA000217(n-binomial(b,3)) ; %p A014369 d := n-binomial(b,3)-binomial(c,2) ; %p A014369 digcatL([b,c,d]) ; # of program transforms %p A014369 end proc: %p A014369 seq(A014369(n),n=1..70) ; # _R. J. Mathar_, May 25 2023 %K A014369 nonn,easy %O A014369 1,1 %A A014369 _N. J. A. Sloane_ %E A014369 a(1), a(4), a(10), a(20), a(35) modified to meet constraint b>c>d and more terms from _Sean A. Irvine_, Oct 18 2018