cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014371 Number of trivalent connected simple graphs with 2n nodes and girth at least 4.

This page as a plain text file.
%I A014371 #49 Aug 04 2024 05:35:52
%S A014371 1,0,0,1,2,6,22,110,792,7805,97546,1435720,23780814,432757568,
%T A014371 8542471494,181492137812,4127077143862
%N A014371 Number of trivalent connected simple graphs with 2n nodes and girth at least 4.
%C A014371 The null graph on 0 vertices is vacuously connected and 3-regular; since it is acyclic, it has infinite girth. [_Jason Kimberley_, Jan 29 2011]
%D A014371 CRC Handbook of Combinatorial Designs, 1996, p. 647.
%H A014371 G. Brinkmann, J. Goedgebeur and B. D. McKay, <a href="https://hal.archives-ouvertes.fr/hal-00990486">Generation of Cubic graphs</a>, Discrete Mathematics and Theoretical Computer Science, 13 (2) (2011), 69-80. (hal-00990486)
%H A014371 House of Graphs, <a href="https://houseofgraphs.org/meta-directory/cubic">Cubic graphs</a>.
%H A014371 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_4">Connected regular graphs with girth at least 4</a>
%H A014371 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>
%H A014371 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a>.
%H A014371 M. Meringer, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199902)30:2&lt;137::AID-JGT7&gt;3.0.CO;2-G">Fast generation of regular graphs and construction of cages</a>, J. Graph Theory 30 (2) (1999) 137-146.
%t A014371 A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]];
%t A014371 A002851 = A@002851;
%t A014371 A006923 = A@006923;
%t A014371 a[n_] := A002851[[n + 1]] - A006923[[n + 1]];
%t A014371 a /@ Range[0, 16] (* _Jean-François Alcover_, Jan 27 2020 *)
%Y A014371 Contribution from _Jason Kimberley_, Jun 28 2010 and Jan 29 2011: (Start)
%Y A014371 3-regular simple graphs with girth at least 4: this sequence (connected), A185234 (disconnected), A185334 (not necessarily connected).
%Y A014371 Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), this sequence (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
%Y A014371 Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), this sequence (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
%Y A014371 Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)
%K A014371 nonn,nice,more,hard
%O A014371 0,5
%A A014371 _N. J. A. Sloane_
%E A014371 Terms a(14) and a(15) appended, from running Meringer's GENREG for 4.2 and 93.2 processor days at U. Newcastle, by Jason Kimberley on Jun 28 2010.
%E A014371 a(16), from House of Graphs, by Jan Goedgebeur et al., added by _Jason Kimberley_, Feb 15 2011