cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014376 Number of trivalent connected simple graphs with 2n nodes and girth at least 8.

This page as a plain text file.
%I A014376 #26 Jan 08 2025 09:43:57
%S A014376 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,3,13,155,4337,266362,20807688
%N A014376 Number of trivalent connected simple graphs with 2n nodes and girth at least 8.
%D A014376 CRC Handbook of Combinatorial Designs, 1996, p. 647.
%H A014376 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_8">Connected regular graphs with girth at least 8</a>
%H A014376 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>
%H A014376 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a>
%H A014376 M. Meringer, <a href="https://doi.org/10.1002/(SICI)1097-0118(199902)30:2%3C137::AID-JGT7%3E3.0.CO;2-G">Fast Generation of Regular Graphs and Construction of Cages</a>, Journal of Graph Theory, 30 (1999), 137-146.
%Y A014376 Contribution from _Jason Kimberley_, May 18 2010 and Jan 29 2011: (Start)
%Y A014376 Connected k-regular simple graphs with girth at least 8: A186728 (any k), A186718 (triangle); specific k: A185118 (k=2), this sequence (k=3).
%Y A014376 Trivalent simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), this sequence (g=8).
%Y A014376 Trivalent simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)
%K A014376 nonn,more,hard
%O A014376 0,19
%A A014376 _N. J. A. Sloane_
%E A014376 Terms a(21), a(22), and a(23) found by running Meringer's GENREG for 0.15, 5.0, and 176.2 processor days, respectively, at U. Ncle. by _Jason Kimberley_, May 18 2010