This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014376 #26 Jan 08 2025 09:43:57 %S A014376 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,3,13,155,4337,266362,20807688 %N A014376 Number of trivalent connected simple graphs with 2n nodes and girth at least 8. %D A014376 CRC Handbook of Combinatorial Designs, 1996, p. 647. %H A014376 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_8">Connected regular graphs with girth at least 8</a> %H A014376 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a> %H A014376 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a> %H A014376 M. Meringer, <a href="https://doi.org/10.1002/(SICI)1097-0118(199902)30:2%3C137::AID-JGT7%3E3.0.CO;2-G">Fast Generation of Regular Graphs and Construction of Cages</a>, Journal of Graph Theory, 30 (1999), 137-146. %Y A014376 Contribution from _Jason Kimberley_, May 18 2010 and Jan 29 2011: (Start) %Y A014376 Connected k-regular simple graphs with girth at least 8: A186728 (any k), A186718 (triangle); specific k: A185118 (k=2), this sequence (k=3). %Y A014376 Trivalent simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), this sequence (g=8). %Y A014376 Trivalent simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End) %K A014376 nonn,more,hard %O A014376 0,19 %A A014376 _N. J. A. Sloane_ %E A014376 Terms a(21), a(22), and a(23) found by running Meringer's GENREG for 0.15, 5.0, and 176.2 processor days, respectively, at U. Ncle. by _Jason Kimberley_, May 18 2010