cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014384 Number of connected regular graphs of degree 11 with 2n nodes.

This page as a plain text file.
%I A014384 #34 Feb 16 2025 08:32:33
%S A014384 1,0,0,0,0,0,1,13,8037796,945095823831333,187549729101764460261505,
%T A014384 66398444413512642732641312352088,
%U A014384 43100445012087185112567117500931916869587
%N A014384 Number of connected regular graphs of degree 11 with 2n nodes.
%C A014384 Since the nontrivial 11-regular graph with the least number of vertices is K_12, there are no disconnected 11-regular graphs with less than 24 vertices. Thus for n<24 this sequence also gives the number of all 11-regular graphs on 2n vertices. - _Jason Kimberley_, Sep 25 2009
%D A014384 CRC Handbook of Combinatorial Designs, 1996, p. 648.
%D A014384 I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
%H A014384 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>
%H A014384 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a>
%H A014384 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RegularGraph.html">Regular Graph</a>
%e A014384 The null graph on 0 vertices is vacuously connected and 11-regular; since it is acyclic, it has infinite girth. - _Jason Kimberley_, Feb 10 2011
%Y A014384 11-regular simple graphs: this sequence (connected), A185213 (disconnected).
%Y A014384 Connected regular simple graphs (with girth at least 3): A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), this sequence (k=11).
%K A014384 nonn,hard,more
%O A014384 0,8
%A A014384 _N. J. A. Sloane_
%E A014384 a(9)-a(10) from _Andrew Howroyd_, Mar 13 2020
%E A014384 a(11)-a(12) from _Andrew Howroyd_, May 19 2020