This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014384 #34 Feb 16 2025 08:32:33 %S A014384 1,0,0,0,0,0,1,13,8037796,945095823831333,187549729101764460261505, %T A014384 66398444413512642732641312352088, %U A014384 43100445012087185112567117500931916869587 %N A014384 Number of connected regular graphs of degree 11 with 2n nodes. %C A014384 Since the nontrivial 11-regular graph with the least number of vertices is K_12, there are no disconnected 11-regular graphs with less than 24 vertices. Thus for n<24 this sequence also gives the number of all 11-regular graphs on 2n vertices. - _Jason Kimberley_, Sep 25 2009 %D A014384 CRC Handbook of Combinatorial Designs, 1996, p. 648. %D A014384 I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978. %H A014384 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a> %H A014384 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a> %H A014384 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RegularGraph.html">Regular Graph</a> %e A014384 The null graph on 0 vertices is vacuously connected and 11-regular; since it is acyclic, it has infinite girth. - _Jason Kimberley_, Feb 10 2011 %Y A014384 11-regular simple graphs: this sequence (connected), A185213 (disconnected). %Y A014384 Connected regular simple graphs (with girth at least 3): A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), this sequence (k=11). %K A014384 nonn,hard,more %O A014384 0,8 %A A014384 _N. J. A. Sloane_ %E A014384 a(9)-a(10) from _Andrew Howroyd_, Mar 13 2020 %E A014384 a(11)-a(12) from _Andrew Howroyd_, May 19 2020