This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014402 #34 Apr 17 2025 01:57:00 %S A014402 1,1,6,12,180,504,12960,45360,1710720,7076160,359251200,1698278400, %T A014402 109930867200,580811212800,46170964224000,268334780313600, %U A014402 25486372251648000,161000868188160000,17891433320656896000,121716656350248960000,15565546988971499520000,113196490405731532800000 %N A014402 Numbers found in denominators of expansion of Airy function Ai(x). %C A014402 Although the description is technically correct, this sequence is unsatisfactory because there are gaps in the series. %C A014402 A014402 arises via Vandermonde determinants as in A203433; see the Mathematica section. - _Clark Kimberling_, Jan 02 2012 %H A014402 G. C. Greubel, <a href="/A014402/b014402.txt">Table of n, a(n) for n = 0..420</a> %H A014402 NIST's Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/Contents/AI/AI.4.html#eq:AI.MC.AI">Airy and Related Functions (Maclaurin Series)</a> by Frank W. J. Olver. %F A014402 a(2*n) = A176730(n). a(2*n + 1) = A176731(n). - _Michael Somos_, Oct 14 2011 %e A014402 Mathematica gives the series as 1/(3^(2/3)*Gamma(2/3)) - x/(3^(1/3)*Gamma(1/3)) + x^3/(6*3^(2/3)*Gamma(2/3)) - x^4/(12*3^(1/3)*Gamma(1/3)) + x^6/(180*3^(2/3)*Gamma(2/3)) - x^7/(504*3^(1/3)*Gamma(1/3)) + x^9/(12960*3^(2/3)*Gamma(2/3)) - ... %t A014402 Series[ AiryAi[ x ], {x, 0, 30} ] %t A014402 a[ n_] := If[ n<0, 0, (n + Quotient[ n, 2])! / Product[ 3 k + 1 + Mod[n, 2], {k, 0, Quotient[ n, 2] - 1}]]; (* _Michael Somos_, Oct 14 2011 *) %t A014402 (* Next, A014402 generated in via Vandermonde determinants based on A007494 *) %t A014402 f[j_]:= j + Floor[(j+1)/2]; z = 20; %t A014402 v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] %t A014402 d[n_]:= Product[(i-1)!, {i,n}] %t A014402 Table[v[n], {n,z}] (* A203433 *) %t A014402 Table[v[n+1]/v[n], {n,z}] (* this sequence *) %t A014402 Table[v[n]/d[n], {n,z}] (* A203434 *) %t A014402 (* _Clark Kimberling_, Jan 02 2012 *) %o A014402 (PARI) {a(n) = if( n<0, 0, (n\2 + n)! / prod( k=0, n\2 -1, n%2 + 3*k + 1))}; /* _Michael Somos_, Oct 14 2011 */ %o A014402 (Magma) %o A014402 A014402:= func< n | n eq 0 select 1 else (&*[n-j+Floor(n/2)-Floor(j/2): j in [0..n-1]]) >; %o A014402 [A014402(n): n in [0..25]]; // _G. C. Greubel_, Sep 20 2023 %o A014402 (SageMath) %o A014402 def A014402(n): return product(n-j+(n//2)-(j//2) for j in range(n)) %o A014402 [A014402(n) for n in range(31)] # _G. C. Greubel_, Sep 20 2023 %Y A014402 Cf. A014403, A060507, A176730, A176731, A203433, A203434. %K A014402 nonn %O A014402 0,3 %A A014402 _N. J. A. Sloane_