cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014402 Numbers found in denominators of expansion of Airy function Ai(x).

This page as a plain text file.
%I A014402 #34 Apr 17 2025 01:57:00
%S A014402 1,1,6,12,180,504,12960,45360,1710720,7076160,359251200,1698278400,
%T A014402 109930867200,580811212800,46170964224000,268334780313600,
%U A014402 25486372251648000,161000868188160000,17891433320656896000,121716656350248960000,15565546988971499520000,113196490405731532800000
%N A014402 Numbers found in denominators of expansion of Airy function Ai(x).
%C A014402 Although the description is technically correct, this sequence is unsatisfactory because there are gaps in the series.
%C A014402 A014402 arises via Vandermonde determinants as in A203433; see the Mathematica section. - _Clark Kimberling_, Jan 02 2012
%H A014402 G. C. Greubel, <a href="/A014402/b014402.txt">Table of n, a(n) for n = 0..420</a>
%H A014402 NIST's Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/Contents/AI/AI.4.html#eq:AI.MC.AI">Airy and Related Functions (Maclaurin Series)</a> by Frank W. J. Olver.
%F A014402 a(2*n) = A176730(n). a(2*n + 1) = A176731(n). - _Michael Somos_, Oct 14 2011
%e A014402 Mathematica gives the series as 1/(3^(2/3)*Gamma(2/3)) - x/(3^(1/3)*Gamma(1/3)) + x^3/(6*3^(2/3)*Gamma(2/3)) - x^4/(12*3^(1/3)*Gamma(1/3)) + x^6/(180*3^(2/3)*Gamma(2/3)) - x^7/(504*3^(1/3)*Gamma(1/3)) + x^9/(12960*3^(2/3)*Gamma(2/3)) - ...
%t A014402 Series[ AiryAi[ x ], {x, 0, 30} ]
%t A014402 a[ n_] := If[ n<0, 0, (n + Quotient[ n, 2])! / Product[ 3 k + 1 + Mod[n, 2], {k, 0, Quotient[ n, 2] - 1}]]; (* _Michael Somos_, Oct 14 2011 *)
%t A014402 (* Next, A014402 generated in via Vandermonde determinants based on A007494 *)
%t A014402 f[j_]:= j + Floor[(j+1)/2]; z = 20;
%t A014402 v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
%t A014402 d[n_]:= Product[(i-1)!, {i,n}]
%t A014402 Table[v[n], {n,z}]             (* A203433 *)
%t A014402 Table[v[n+1]/v[n], {n,z}]      (* this sequence *)
%t A014402 Table[v[n]/d[n], {n,z}]        (* A203434 *)
%t A014402 (* _Clark Kimberling_, Jan 02 2012 *)
%o A014402 (PARI) {a(n) = if( n<0, 0, (n\2 + n)! / prod( k=0, n\2 -1, n%2 + 3*k + 1))}; /* _Michael Somos_, Oct 14 2011 */
%o A014402 (Magma)
%o A014402 A014402:= func< n | n eq 0 select 1 else (&*[n-j+Floor(n/2)-Floor(j/2): j in [0..n-1]]) >;
%o A014402 [A014402(n): n in [0..25]]; // _G. C. Greubel_, Sep 20 2023
%o A014402 (SageMath)
%o A014402 def A014402(n): return product(n-j+(n//2)-(j//2) for j in range(n))
%o A014402 [A014402(n) for n in range(31)] # _G. C. Greubel_, Sep 20 2023
%Y A014402 Cf. A014403, A060507, A176730, A176731, A203433, A203434.
%K A014402 nonn
%O A014402 0,3
%A A014402 _N. J. A. Sloane_