cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014410 Elements in Pascal's triangle (by row) that are not 1.

This page as a plain text file.
%I A014410 #61 Oct 27 2023 22:00:43
%S A014410 2,3,3,4,6,4,5,10,10,5,6,15,20,15,6,7,21,35,35,21,7,8,28,56,70,56,28,
%T A014410 8,9,36,84,126,126,84,36,9,10,45,120,210,252,210,120,45,10,11,55,165,
%U A014410 330,462,462,330,165,55,11,12,66,220,495,792,924,792,495,220,66,12,13,78
%N A014410 Elements in Pascal's triangle (by row) that are not 1.
%C A014410 Also, rows of triangle formed using Pascal's rule except begin and end n-th row with n+2. - _Asher Auel_.
%C A014410 Row sums are A000918. - _Roger L. Bagula_ and _Gary W. Adamson_, Jan 15 2009
%C A014410 Given the triangle signed by rows (+ - + ...) = M, with V = a variant of the Bernoulli numbers starting [1/2, 1/6, 0, -1/30, 0, 1/42, ...]; M*V = [1, 1, 1, ...]. - _Gary W. Adamson_, Mar 05 2012
%C A014410 Also A014410 * [1/2, 1/6, 0, -1/30, 0, 1/42, 0, ...] = [1, 2, 3, 4, ...]. For an alternative way to derive the Bernoulli numbers from a modified version of Pascal's triangle see A135225. - _Peter Bala_, Dec 18 2014
%C A014410 T(n,k) mod n = A053201(n,k), k=1..n-1. - _Reinhard Zumkeller_, Aug 17 2013
%C A014410 From _Wolfdieter Lang_, May 22 2015: (Start)
%C A014410 This is Johannes Scheubel's (1494-1570) (also Scheybl, Schöblin) version of the arithmetical triangle from his 1545 book "De numeris et diversis rationibus". See the Kac reference, p. 396 and the Table 12.1 on p. 395.
%C A014410 The row sums give 2*A000225(n-1) = A000918(n) = 2*(2^n - 1), n >= 2. (See the second comment above).
%C A014410 The alternating row sums give repeat(2,0) = 2*A059841(n), n >= 2. (End)
%C A014410 T(n+1,k) is the number of k-facets of the n-simplex. - _Jianing Song_, Oct 22 2023
%D A014410 Victor J. Kac, A History of Mathematics, third edition, Addison-Wesley, 2009, pp. 395, 396.
%H A014410 Reinhard Zumkeller, <a href="/A014410/b014410.txt">Rows n=2..150 of triangle, flattened</a>
%H A014410 Carl McTague, <a href="http://arxiv.org/abs/1510.06696">On the Greatest Common Divisor of binomial(qn, q), binomial(qn,2q), ..., binomial(qn, qn-q)</a>, arXiv:1510.06696 [math.CO], 2015.
%H A014410 Wikipedia, <a href="https://de.wikipedia.org/wiki/Johann_Scheubel">Johannes Scheubel</a> (in German).
%H A014410 Wikipedia, <a href="https://en.wikipedia.org/wiki/Simplex">Simplex</a>
%F A014410 T(n,k) = binomial(n,k) = A007318(n,k), n >= 2, k = 1, 2, ..., n-1.
%F A014410 a(n) = C(A003057(n),A002260(n)) = C(A003057(n),A004736(n)). - _Lekraj Beedassy_, Jul 29 2006
%F A014410 T(n,k) = A028263(n,k) - A007318(n,k). - _Reinhard Zumkeller_, Mar 12 2012
%F A014410 gcd_{k=1..n-1} T(n, k) = A014963(n), see Theorem 1 of McTague link. - _Michel Marcus_, Oct 23 2015
%e A014410 The triangle T(n,k) begins:
%e A014410 n\k  1  2   3   4    5    6    7    8   9  10 11
%e A014410 2:   2
%e A014410 3:   3  3
%e A014410 4:   4  6   4
%e A014410 5:   5 10  10   5
%e A014410 6:   6 15  20  15    6
%e A014410 7:   7 21  35  35   21    7
%e A014410 8:   8 28  56  70   56   28    8
%e A014410 9:   9 36  84 126  126   84   36    9
%e A014410 10: 10 45 120 210  252  210  120   45  10
%e A014410 11: 11 55 165 330  462  462  330  165  55  11
%e A014410 12: 12 66 220 495  792  924  792  495 220  66 12
%e A014410 ... reformatted. - _Wolfdieter Lang_, May 22 2015
%p A014410 for i from 0 to 12 do seq(binomial(i, j)*1^(i-j), j = 1 .. i-1) od; # _Zerinvary Lajos_, Dec 02 2007
%t A014410 Select[ Flatten[ Table[ Binomial[ n, i ], {n, 0, 13}, {i, 0, n} ] ], #>1& ]
%o A014410 (Haskell)
%o A014410 a014410 n k = a014410_tabl !! (n-2) !! (k-1)
%o A014410 a014410_row n = a014410_tabl !! (n-2)
%o A014410 a014410_tabl = map (init . tail) $ drop 2 a007318_tabl
%o A014410 -- _Reinhard Zumkeller_, Mar 12 2012
%Y A014410 Cf. A007318, A000918, A027641.
%Y A014410 A180986 is the same sequence but regarded as a square array.
%Y A014410 Cf. A000225,A059841, A257241 (Stifel's version).
%K A014410 nonn,easy,tabl
%O A014410 2,1
%A A014410 _Mohammad K. Azarian_
%E A014410 More terms from _Erich Friedman_