This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014410 #61 Oct 27 2023 22:00:43 %S A014410 2,3,3,4,6,4,5,10,10,5,6,15,20,15,6,7,21,35,35,21,7,8,28,56,70,56,28, %T A014410 8,9,36,84,126,126,84,36,9,10,45,120,210,252,210,120,45,10,11,55,165, %U A014410 330,462,462,330,165,55,11,12,66,220,495,792,924,792,495,220,66,12,13,78 %N A014410 Elements in Pascal's triangle (by row) that are not 1. %C A014410 Also, rows of triangle formed using Pascal's rule except begin and end n-th row with n+2. - _Asher Auel_. %C A014410 Row sums are A000918. - _Roger L. Bagula_ and _Gary W. Adamson_, Jan 15 2009 %C A014410 Given the triangle signed by rows (+ - + ...) = M, with V = a variant of the Bernoulli numbers starting [1/2, 1/6, 0, -1/30, 0, 1/42, ...]; M*V = [1, 1, 1, ...]. - _Gary W. Adamson_, Mar 05 2012 %C A014410 Also A014410 * [1/2, 1/6, 0, -1/30, 0, 1/42, 0, ...] = [1, 2, 3, 4, ...]. For an alternative way to derive the Bernoulli numbers from a modified version of Pascal's triangle see A135225. - _Peter Bala_, Dec 18 2014 %C A014410 T(n,k) mod n = A053201(n,k), k=1..n-1. - _Reinhard Zumkeller_, Aug 17 2013 %C A014410 From _Wolfdieter Lang_, May 22 2015: (Start) %C A014410 This is Johannes Scheubel's (1494-1570) (also Scheybl, Schöblin) version of the arithmetical triangle from his 1545 book "De numeris et diversis rationibus". See the Kac reference, p. 396 and the Table 12.1 on p. 395. %C A014410 The row sums give 2*A000225(n-1) = A000918(n) = 2*(2^n - 1), n >= 2. (See the second comment above). %C A014410 The alternating row sums give repeat(2,0) = 2*A059841(n), n >= 2. (End) %C A014410 T(n+1,k) is the number of k-facets of the n-simplex. - _Jianing Song_, Oct 22 2023 %D A014410 Victor J. Kac, A History of Mathematics, third edition, Addison-Wesley, 2009, pp. 395, 396. %H A014410 Reinhard Zumkeller, <a href="/A014410/b014410.txt">Rows n=2..150 of triangle, flattened</a> %H A014410 Carl McTague, <a href="http://arxiv.org/abs/1510.06696">On the Greatest Common Divisor of binomial(qn, q), binomial(qn,2q), ..., binomial(qn, qn-q)</a>, arXiv:1510.06696 [math.CO], 2015. %H A014410 Wikipedia, <a href="https://de.wikipedia.org/wiki/Johann_Scheubel">Johannes Scheubel</a> (in German). %H A014410 Wikipedia, <a href="https://en.wikipedia.org/wiki/Simplex">Simplex</a> %F A014410 T(n,k) = binomial(n,k) = A007318(n,k), n >= 2, k = 1, 2, ..., n-1. %F A014410 a(n) = C(A003057(n),A002260(n)) = C(A003057(n),A004736(n)). - _Lekraj Beedassy_, Jul 29 2006 %F A014410 T(n,k) = A028263(n,k) - A007318(n,k). - _Reinhard Zumkeller_, Mar 12 2012 %F A014410 gcd_{k=1..n-1} T(n, k) = A014963(n), see Theorem 1 of McTague link. - _Michel Marcus_, Oct 23 2015 %e A014410 The triangle T(n,k) begins: %e A014410 n\k 1 2 3 4 5 6 7 8 9 10 11 %e A014410 2: 2 %e A014410 3: 3 3 %e A014410 4: 4 6 4 %e A014410 5: 5 10 10 5 %e A014410 6: 6 15 20 15 6 %e A014410 7: 7 21 35 35 21 7 %e A014410 8: 8 28 56 70 56 28 8 %e A014410 9: 9 36 84 126 126 84 36 9 %e A014410 10: 10 45 120 210 252 210 120 45 10 %e A014410 11: 11 55 165 330 462 462 330 165 55 11 %e A014410 12: 12 66 220 495 792 924 792 495 220 66 12 %e A014410 ... reformatted. - _Wolfdieter Lang_, May 22 2015 %p A014410 for i from 0 to 12 do seq(binomial(i, j)*1^(i-j), j = 1 .. i-1) od; # _Zerinvary Lajos_, Dec 02 2007 %t A014410 Select[ Flatten[ Table[ Binomial[ n, i ], {n, 0, 13}, {i, 0, n} ] ], #>1& ] %o A014410 (Haskell) %o A014410 a014410 n k = a014410_tabl !! (n-2) !! (k-1) %o A014410 a014410_row n = a014410_tabl !! (n-2) %o A014410 a014410_tabl = map (init . tail) $ drop 2 a007318_tabl %o A014410 -- _Reinhard Zumkeller_, Mar 12 2012 %Y A014410 Cf. A007318, A000918, A027641. %Y A014410 A180986 is the same sequence but regarded as a square array. %Y A014410 Cf. A000225,A059841, A257241 (Stifel's version). %K A014410 nonn,easy,tabl %O A014410 2,1 %A A014410 _Mohammad K. Azarian_ %E A014410 More terms from _Erich Friedman_