This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014421 #19 Jan 05 2025 19:51:34 %S A014421 1,1,1,1,1,1,3,3,1,1,1,1,5,5,1,1,15,15,1,1,7,21,35,35,21,7,1,1,1,1,9, %T A014421 9,1,1,45,45,1,1,11,55,165,165,55,11,1,1,495,495,1,1,13,715,1287,1287, %U A014421 715,13,1,1,91,1001,3003,3003,1001,91,1,1,15,105,455,1365,3003,5005 %N A014421 Odd elements in Pascal's triangle. %C A014421 The number of terms of the n-row is A001316(n). - _Michel Marcus_, Jan 11 2016 %H A014421 Robert Israel, <a href="/A014421/b014421.txt">Table of n, a(n) for n = 0..10070</a> (rows 0 to 375, flattened) %H A014421 Arvind Ayyer, Amritanshu Prasad, Steven Spallone, <a href="http://arxiv.org/abs/1601.01776">Odd partitions in Young's lattice</a>, arXiv:1601.01776 [math.CO], 2016. See Fig. 3. %H A014421 A. M. Reiter, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/31-2/reiter.pdf">Determining the dimension of fractals generated by Pascal’s triangle</a>, Fibonacci Quart, 31(2):112-120, 1993. %e A014421 Triangle starts: %e A014421 1; %e A014421 1, 1; %e A014421 1, 1; %e A014421 1, 3, 3, 1; %e A014421 1, 1; %e A014421 1, 5, 5, 1; %e A014421 1, 15, 15, 1; %e A014421 1, 7, 21, 35, 35, 21, 7, 1; %e A014421 ... %p A014421 select(type, [seq(seq(binomial(n,k),k=0..n),n=0..20)],odd); # _Robert Israel_, Jan 11 2016 %t A014421 Select[ Flatten[ Table[ Binomial[ n, i ], {n, 0, 20}, {i, 0, n} ] ], OddQ ] %o A014421 (PARI) tabf(nn) = {for (n=0, nn, for (k=0, n, b = binomial(n, k); if (b % 2, print1(b, ", "))); print(););} \\ _Michel Marcus_, Jan 11 2016 %Y A014421 Cf. A001316, A007318, A014414. %Y A014421 Cf. A143333. [From _Reinhard Zumkeller_, Oct 24 2010] %K A014421 nonn,easy,tabf %O A014421 0,7 %A A014421 _Mohammad K. Azarian_ %E A014421 More terms from _Erich Friedman_ %E A014421 Keyword tabl replaced by tabf by _Reinhard Zumkeller_, Oct 21 2010 %E A014421 Offset changed to 0 by _Michel Marcus_, Jan 11 2016