This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014431 #55 Nov 22 2024 08:33:50 %S A014431 1,2,2,6,14,42,122,382,1206,3922,12914,43190,145950,498170,1714026, %T A014431 5940014,20712646,72623266,255875298,905477734,3216853294,11469069258, %U A014431 41023019098,147166210014,529374272470,1908965352434,6899707805522,24991194656022,90698707816766 %N A014431 a(1) = 1, a(2) = 2, a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-2)*a(2) for n >= 3. %H A014431 Michael De Vlieger, <a href="/A014431/b014431.txt">Table of n, a(n) for n = 1..1724</a> %H A014431 Paul Barry, <a href="https://arxiv.org/abs/1910.00875">Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials</a>, arXiv:1910.00875 [math.CO], 2019. %F A014431 a(n) = 2*A025235(n-2) for n>=2. %F A014431 G.f.: (1+x-sqrt(1-2*x-7*x^2))/2. - _Michael Somos_, Jun 08 2000 %F A014431 a(n) = (A084601(n) - A084601(n-1))/(2*(n-1)) for n > 1. - _Mark van Hoeij_, Jul 02 2010 %F A014431 G.f.: x + 2*x^2/G(0) with G(k) = (1 - x - 2*x^2/G(k+1)) (continued fraction). - _Nikolaos Pantelidis_, Dec 16 2022 %F A014431 From _Peter Bala_, May 01 2024: (Start) %F A014431 O.g.f.: A(x) = x*S(x/(1 + 2*x)) = 2*x - x*S(- x/(1 - 4*x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. for the large Schröder numbers A006318. %F A014431 The g.f. satisfies A(x)^2 - (1 + x)*A(x) + x*(1 + 2*x) = 0. %F A014431 A(x) = x*(1 + 2*x)/(1 + x - x*(1 + 2*x)/(1 + x - x*(1 + 2*x)/(1 + x - ...))). %F A014431 A(x) = x/(1 - 2*x/(1 + 2*x - x/(1 - 2*x/(1 + 2*x - x/(1 - 2*x/(1 + 2*x - x/(1 - ...))))))). (End) %F A014431 D-finite with recurrence n*a(n) +(-2*n+3)*a(n-1) +7*(-n+3)*a(n-2)=0. - _R. J. Mathar_, Nov 22 2024 %t A014431 Rest@ CoefficientList[Series[(1 + x - Sqrt[1 - 2 x - 7 x^2])/2, {x, 0, 27}], x] (* _Michael De Vlieger_, Jan 02 2020 *) %o A014431 (PARI) a(n)=polcoeff((1+x-sqrt(1-2*x-7*x^2+x*O(x^n)))/2,n) %o A014431 (Magma) a:=[1,2]; for n in [3..30] do Append(~a,&+[a[k]*a[n-k]:k in [1..n-2]] ); end for; a; // _Marius A. Burtea_, Jan 02 2020 %Y A014431 Cf. A025235, A006318, A084601. %K A014431 nonn,easy %O A014431 1,2 %A A014431 _Clark Kimberling_ and _Wouter Meeussen_ %E A014431 Corrected by _T. D. Noe_, Oct 31 2006