cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014462 Triangular array formed from elements to left of middle of Pascal's triangle.

This page as a plain text file.
%I A014462 #44 Jul 02 2025 16:01:55
%S A014462 1,1,1,3,1,4,1,5,10,1,6,15,1,7,21,35,1,8,28,56,1,9,36,84,126,1,10,45,
%T A014462 120,210,1,11,55,165,330,462,1,12,66,220,495,792,1,13,78,286,715,1287,
%U A014462 1716,1,14,91,364,1001,2002,3003,1,15,105,455,1365,3003,5005,6435,1,16
%N A014462 Triangular array formed from elements to left of middle of Pascal's triangle.
%C A014462 Coefficients for Pontryagin classes of projective spaces. See p. 3 of the Wilson link. Aerated to become a lower triangular matrix with alternating zeros on the diagonal, this matrix appparently becomes the reverse, or mirror, of A117178. - _Tom Copeland_, May 30 2017
%H A014462 Reinhard Zumkeller, <a href="/A014462/b014462.txt">Rows n = 1..200 of triangle, flattened</a>
%H A014462 Jon Maiga, <a href="http://sequencedb.net/s/A014462">Computer-generated formulas for A014462</a>, Sequence Machine.
%H A014462 D. Wilson, <a href="http://math.uchicago.edu/~chicagotopology2/cobordism-and-k-theory-talk.pdf">Genera: From cobordism to K-theory</a>, Jul 2016.
%H A014462 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%e A014462 Array begins:
%e A014462   1;
%e A014462   1;
%e A014462   1,  3;
%e A014462   1,  4;
%e A014462   1,  5, 10;
%e A014462   1,  6, 15;
%e A014462   1,  7, 21,  35;
%e A014462   1,  8, 28,  56;
%e A014462   1,  9, 36,  84, 126;
%e A014462   1, 10, 45, 120, 210;
%e A014462   1, 11, 55, 165, 330, 462;
%o A014462 (Haskell)
%o A014462 a014462 n k = a014462_tabf !! (n-1) !! (k-1)
%o A014462 a014462_row n = a014462_tabf !! (n-1)
%o A014462 a014462_tabf = map reverse a014413_tabf
%o A014462 -- _Reinhard Zumkeller_, Dec 24 2015
%Y A014462 Cf. A014413, A034868, A058622 (row sums).
%Y A014462 Cf. A001791 (a half-diagonal and diagonal sums).
%Y A014462 Cf. A007318, A000037, A008314.
%Y A014462 Cf. A117178.
%K A014462 tabf,nonn,easy
%O A014462 1,4
%A A014462 _Mohammad K. Azarian_
%E A014462 More terms from _James Sellers_