This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014466 #105 Feb 16 2025 08:32:33 %S A014466 1,2,5,19,167,7580,7828353,2414682040997,56130437228687557907787, %T A014466 286386577668298411128469151667598498812365 %N A014466 Dedekind numbers: monotone Boolean functions, or nonempty antichains of subsets of an n-set. %C A014466 A monotone Boolean function is an increasing functions from P(S), the set of subsets of S, to {0,1}. %C A014466 The count of antichains includes the antichain consisting of only the empty set, but excludes the empty antichain. %C A014466 Also counts bases of hereditary systems. %C A014466 Also antichains of nonempty subsets of an n-set. The unlabeled case is A306505. The spanning case is A307249. This sequence has a similar description to A305000 except that the singletons must be disjoint from the other edges. - _Gus Wiseman_, Feb 20 2019 %C A014466 a(n) is the total number of hierarchical log-linear models on n labeled factors (categorical variables). See Wickramasinghe (2008) and Nardi and Rinaldo (2012). - _Petros Hadjicostas_, Apr 08 2020 %C A014466 From _Lorenzo Sauras Altuzarra_, Apr 02 2023: (Start) %C A014466 a(n) is the number of labeled abstract simplicial complexes on n vertices. %C A014466 A058673(n) <= a(n) <= A058891(n+1). (End) %D A014466 I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38. %D A014466 Jorge Luis Arocha, "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21 (1987). %D A014466 J. Berman, "Free spectra of 3-element algebras," in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983. %D A014466 G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63. %D A014466 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273. %D A014466 J. Dezert, Fondations pour une nouvelle théorie du raisonnement plausible et paradoxal (la DSmT), Tech. Rep. 1/06769 DTIM, ONERA, Paris, page 33, January 2003. %D A014466 J. Dezert, F. Smarandache, On the generating of hyper-powersets for the DSmT, Proceedings of the 6th International Conference on Information Fusion, Cairns, Australia, 2003. %D A014466 M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188. %D A014466 W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971. %D A014466 S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214. %D A014466 D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349. %H A014466 Guillermo Alesandroni and Sungjin Kim, <a href="https://projecteuclid.org/journals/jca/journal-of-commutative-algebra/DownloadAcceptedPapers/240404-Alesandroni.pdf">The probability that the Taylor resolution of a monomial ideal is minimal</a>, J. Comm. Alg., 2024. See p. 3. %H A014466 K. Atanassov, <a href="http://www.gallup.unm.edu/~smarandache/Atanassov-SomeProblems.pdf">On Some of Smarandache's Problems</a>. %H A014466 K. S. Brown, <a href="http://www.mathpages.com/home/kmath030.htm">Dedekind's problem</a>. %H A014466 Winfried Bruns, Pedro A. García-Sánchez, and Luca Moci, <a href="https://arxiv.org/abs/1902.00864">The monoid of monotone functions on a poset and arithmetic multiplicities for uniform matroids</a>, arXiv:1902.00864 [math.CO], 2019. %H A014466 Donald E. Campbell, Jack Graver, and Jerry S. Kelly, <a href="https://doi.org/10.1016/j.mathsocsci.2012.05.001">There are more strategy-proof procedures than you think</a>, Mathematical Social Sciences 64 (2012) 263-265. - _N. J. A. Sloane_, Oct 23 2012 %H A014466 David Carey and Mordechai Katzman, <a href="https://arxiv.org/abs/2409.05481">Stanley-Reisner Ideals with Pure Resolutions</a>, arXiv:2409.05481 [math.AC], 2024. See p. 52. %H A014466 Fan Cheng, <a href="https://doi.org/10.1109/ISIT.2014.6874940">Optimality of routing on the wiretap network with simple network topology</a>, Information Theory (ISIT), 2014 IEEE International Symposium on, June 29 2014-July 4 2014 Page(s): 786 - 790 INSPEC Accession Number: 14524545 Honolulu, HI. %H A014466 Fan Cheng and Vincent Y. F. Tan, <a href="http://arxiv.org/abs/1505.02862">A Numerical Study on the Wiretap Network with a Simple Network Topology</a>, arXiv preprint arXiv:1505.02862 [cs.IT], 2015. %H A014466 Jean Dezert, <a href="http://www.gallup.unm.edu/~smarandache/IS2002Sept24.pdf">Foundations for a new theory for plausible and paradoxical reasoning</a>, Tech. Rep. DTIM/IED, ONERA, Paris, pp. 14-15, 2002. %H A014466 Jean Dezert, Combination of paradoxical sources of information within the neutrosophic framework, <a href="http://www.gallup.unm.edu/~smarandache/NeutrosophicProceedings.pdf">Proceedings of the First International Conference on Neutrosophics</a> (2001). %H A014466 J. L. King, <a href="http://www.math.ufl.edu/~squash/">Brick tiling and monotone Boolean functions</a>. %H A014466 J. L. King, <a href="https://arxiv.org/abs/math/9809176">A change-of-coordinates from Geometry to Algebra applied to brick tilings</a>, arXiv:math/9809176 [math.CO], 1998. %H A014466 D. J. Kleitman, <a href="http://dx.doi.org/10.1090/S0002-9939-1969-0241334-6">On Dedekind's problem: The number of monotone Boolean functions</a>, Proc. Amer. Math. Soc. 21 (1969), 677-682. %H A014466 D. J. Kleitman and G. Markowsky, <a href="http://dx.doi.org/10.1090/S0002-9947-1975-0382107-0">On Dedekind's problem: the number of isotone Boolean functions. II</a>, Trans. Amer. Math. Soc. 213 (1975), 373-390. %H A014466 Y. Nardi and A. Rinaldo, <a href="https://projecteuclid.org/euclid.bj/1340887009">The log-linear group-lasso estimator and its asymptotic properties</a>, Bernoulli 18(3) (2012), 945-974; see Table 2 on p. 954. %H A014466 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Antichain.html">Antichain</a>. %H A014466 R. I. P. Wickramasinghe, <a href="http://hdl.handle.net/2346/20089">Topics in log-linear models</a>, Master of Science thesis in Statistics, Texas Tech University, Lubbock, TX, 2008. [For n = 2, the a(2) = 5 hierarchical log-linear models on two factors X and Y appear on p. 18. For n = 3, the a(3) = 19 hierarchical log-linear models on three factors X, Y, and Z, appear on p. 36. - _Petros Hadjicostas_, Apr 08 2020] %H A014466 D. H. Wiedemann, <a href="https://doi.org/10.1007/BF00385808">A computation of the eighth Dedekind number</a>, Order 8 (1991) 5-6. %H A014466 Wikipedia, <a href="https://en.wikipedia.org/wiki/Abstract_simplicial_complex">Abstract simplicial complex</a>. %H A014466 Gus Wiseman, <a href="/A048143/a048143_4.txt">Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons</a>. %H A014466 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a> %F A014466 Binomial transform of A307249 (or A006126 if its zeroth term is 1). - _Gus Wiseman_, Feb 20 2019 %F A014466 a(n) >= A005465(n) (because the hierarchical log-linear models on n factors always include all the conditional independence models considered by I. J. Good in A005465). - _Petros Hadjicostas_, Apr 24 2020 %e A014466 a(2)=5 from the antichains {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}. %e A014466 From _Gus Wiseman_, Feb 20 2019: (Start) %e A014466 The a(0) = 1 through a(3) = 19 antichains: %e A014466 {{}} {{}} {{}} {{}} %e A014466 {{1}} {{1}} {{1}} %e A014466 {{2}} {{2}} %e A014466 {{12}} {{3}} %e A014466 {{1}{2}} {{12}} %e A014466 {{13}} %e A014466 {{23}} %e A014466 {{123}} %e A014466 {{1}{2}} %e A014466 {{1}{3}} %e A014466 {{2}{3}} %e A014466 {{1}{23}} %e A014466 {{2}{13}} %e A014466 {{3}{12}} %e A014466 {{12}{13}} %e A014466 {{12}{23}} %e A014466 {{13}{23}} %e A014466 {{1}{2}{3}} %e A014466 {{12}{13}{23}} %e A014466 (End) %e A014466 From _Lorenzo Sauras Altuzarra_, Apr 02 2023: (Start) %e A014466 The 19 sets E such that ({1, 2, 3}, E) is an abstract simplicial complex: %e A014466 {} %e A014466 {{1}} %e A014466 {{2}} %e A014466 {{3}} %e A014466 {{1}, {2}} %e A014466 {{1}, {3}} %e A014466 {{2}, {3}} %e A014466 {{1}, {2}, {3}} %e A014466 {{1}, {2}, {1, 2}} %e A014466 {{1}, {3}, {1, 3}} %e A014466 {{2}, {3}, {2, 3}} %e A014466 {{1}, {2}, {3}, {1, 2}} %e A014466 {{1}, {2}, {3}, {1, 3}} %e A014466 {{1}, {2}, {3}, {2, 3}} %e A014466 {{1}, {2}, {3}, {1, 2}, {1, 3}} %e A014466 {{1}, {2}, {3}, {1, 2}, {2, 3}} %e A014466 {{1}, {2}, {3}, {1, 3}, {2, 3}} %e A014466 {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} %e A014466 {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} %e A014466 (End) %t A014466 nn=5; %t A014466 stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; %t A014466 Table[Length[stableSets[Subsets[Range[n],{1,n}],SubsetQ]],{n,0,nn}] (* _Gus Wiseman_, Feb 20 2019 *) %t A014466 A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]]; %t A014466 A@372 - 1 (* _Jean-François Alcover_, Jan 07 2020 *) %Y A014466 Equals A000372 - 1 = A007153 + 1. %Y A014466 Cf. A003182, A005465, A006126, A006602, A058673 (labeled matroids), A058891 (labeled hypergraphs), A261005, A293606, A304996, A305000, A306505, A307249, A317674, A319721, A320449, A321679. %K A014466 nonn,hard,more,nice %O A014466 0,2 %A A014466 _N. J. A. Sloane_ %E A014466 Last term from D. H. Wiedemann, personal communication. %E A014466 Additional comments from _Michael Somos_, Jun 10 2002 %E A014466 Term a(9) (using A000372) from _Joerg Arndt_, Apr 07 2023