cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014483 Expansion of (1+2*x) / (1-2*x)^4.

This page as a plain text file.
%I A014483 #21 Sep 22 2017 04:44:26
%S A014483 1,10,56,240,880,2912,8960,26112,72960,197120,518144,1331200,3354624,
%T A014483 8314880,20316160,49020928,116981760,276430848,647495680,1504706560,
%U A014483 3471835136,7958691840,18136170496,41104179200,92694118400,208071032832,465064427520
%N A014483 Expansion of (1+2*x) / (1-2*x)^4.
%H A014483 Colin Barker, <a href="/A014483/b014483.txt">Table of n, a(n) for n = 0..1000</a>
%H A014483 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-24,32,-16).
%F A014483 a(n) = 2^n * A000330(n+1). - _R. J. Mathar_, Oct 23 2008
%F A014483 From _Colin Barker_, Feb 13 2017: (Start)
%F A014483 a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>3.
%F A014483 a(n) = (2^(n-1)*(6 + 13*n + 9*n^2 + 2*n^3)) / 3. (End)
%F A014483 a(n) = (1/2) * Sum_{k=0..n+1} Sum_{i=0..n+1} (n-i+1)^2 * C(n+1,k). - _Wesley Ivan Hurt_, Sep 21 2017
%o A014483 (PARI) Vec((1 + 2*x) / (1 - 2*x)^4 + O(x^30)) \\ _Charles R Greathouse IV_, Sep 26 2012, corrected by _Colin Barker_, Feb 13 2017
%Y A014483 Cf. A087076, A058645.
%K A014483 nonn,easy
%O A014483 0,2
%A A014483 _N. J. A. Sloane_
%E A014483 More terms from _Colin Barker_, Feb 13 2017