This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014495 #79 Jun 25 2025 04:06:41 %S A014495 0,0,1,2,5,9,19,34,69,125,251,461,923,1715,3431,6434,12869,24309, %T A014495 48619,92377,184755,352715,705431,1352077,2704155,5200299,10400599, %U A014495 20058299,40116599,77558759,155117519,300540194,601080389,1166803109,2333606219,4537567649 %N A014495 Central binomial coefficient - 1. %C A014495 For n > 0: sum of positive elements in row (n-1) of triangle A214292. - _Reinhard Zumkeller_, Jul 12 2012 %C A014495 Number of Young tableaux with n cells and 2 rows. Also number of self-inverse permutations in S_n with longest increasing subsequence of length 2. The a(4) = 5 permutations are 1432, 2143, 3214, 3412, 4231 and the a(5) = 9 permutations are 15432, 21543, 32154, 35142, 42513, 43215, 45312, 52431, 53241. - _Alois P. Heinz_, Oct 03 2012 %C A014495 Number of nonempty subsets of {1,2,...,n} that contain the same number of even and odd numbers. For example, a(5)=9 and the 9 subsets are {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}. - _Enrique Navarrete_, Feb 10 2018 %H A014495 Alois P. Heinz, <a href="/A014495/b014495.txt">Table of n, a(n) for n = 0..1000</a> %F A014495 a(n) = A001405(n)-1. %F A014495 a(n) = C(n,floor(n/2))-1. - _Alois P. Heinz_, Oct 03 2012 %F A014495 (n+1)*a(n)-2*a(n-1)-4*(n-1)*a(n-2) = 3*n-3 with n>1, a(0)=a(1)=0. - _Bruno Berselli_, Oct 03 2012 %F A014495 D-finite with recurrence: -(n+1)*(n-2)*a(n) +(n^2+n-4)*a(n-1) +2*(n-1)*(2*n-5)*a(n-2) -4*(n-1)*(n-2)*a(n-3)=0. - Conjectured by _R. J. Mathar_, Jan 04 2017, confirmed by _Robert Israel_, Feb 11 2018 %F A014495 G.f.: (x+1)/(2*x*(x-1)) - sqrt(1-4*x^2)/(2*x*(2*x-1)). - _Robert Israel_, Feb 11 2018 %p A014495 a:= n-> binomial(n, iquo(n, 2))-1: %p A014495 seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 03 2012 %t A014495 Table[Binomial[n, Floor[n/2]] - 1, {n, 0, 50}] (* _Bruno Berselli_, Oct 03 2012 *) %o A014495 (Maxima) A014495(n):=binomial(n,floor(n/2))-1$ %o A014495 makelist(A014495(n),n,0,30); /* _Martin Ettl_, Nov 01 2012 */ %o A014495 (Magma) [Binomial(n, Floor(n/2))-1: n in [0..50]]; // _Vincenzo Librandi_, Feb 11 2018 %Y A014495 Cf. A001405, A037952 (first differences). %Y A014495 a(n) = A094718(n, n) = A094718(n-1, n)+1. %Y A014495 a(n) = A047884(n, 2) for n>=2. - _Alois P. Heinz_, Oct 03 2012 %Y A014495 Cf. A214292. %K A014495 nonn,easy %O A014495 0,4 %A A014495 _N. J. A. Sloane_, Denis Pochuev (denis(AT)cdc.Informatik.TH-Darmstadt.de) %E A014495 Edited by _Andrey Zabolotskiy_, Apr 14 2025