cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014530 List of sizes of squares occurring in lowest order example of a perfect squared square.

This page as a plain text file.
%I A014530 #43 Mar 13 2025 12:53:09
%S A014530 2,4,6,7,8,9,11,15,16,17,18,19,24,25,27,29,33,35,37,42,50
%N A014530 List of sizes of squares occurring in lowest order example of a perfect squared square.
%C A014530 A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle, and compound if it does. The order of a squared rectangle is the number of constituent squares. Duijvestijn's perfect square of lowest order (21) is simple. The lowest order of a compound perfect square is 24. [_Geoffrey H. Morley_, Oct 17 2012]
%C A014530 See the MathWorld link for an explanation of Bouwkamp code. The Bouwkamp code for the squaring is (50,35,27)(8,19)(15,17,11)(6,24)(29,25,9,2)(7,18)(16)(42)(4,37)(33). [_Geoffrey H. Morley_, Oct 18 2012]
%D A014530 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences. Academic Press, San Diego, 1995, Fig. M4482.
%D A014530 I. Stewart, Squaring the Square, Scientific Amer., 277, July 1997, pp. 94-96.
%H A014530 Stuart E. Anderson, <a href="http://www.squaring.net/downloads/downloads.html#pss">Catalogues of Perfect Squared Squares</a>
%H A014530 C. J. Bouwkamp and A. J. W. Duijvestijn, <a href="http://alexandria.tue.nl/repository/books/391207.pdf">Catalogue of Simple Perfect Squared Squares of orders 21 through 25</a>, EUT Report 92-WSK-03, Eindhoven University of Technology, Eindhoven, The Netherlands, November 1992.
%H A014530 C. J. Bouwkamp and A. J. W. Duijvestijn, <a href="http://alexandria.tue.nl/repository/books/430534.pdf">Album of Simple Perfect Squared Squares of order 26</a>, EUT Report 94-WSK-02, Eindhoven University of Technology, Eindhoven, The Netherlands, December 1994.
%H A014530 A. J. W. Duijvestijn, <a href="http://doc.utwente.nl/68433/1/Duijvestijn78simple.pdf">Simple perfect square of lowest order</a>, J. Combin. Theory Ser. B 25 (1978), 240-243.
%H A014530 Gergely Földvári, <a href="/A014530/a014530.jpg">Photo of my artwork (2022) depicting the lowest order perfect squared square using 21 distinct colors</a>
%H A014530 N. D. Kazarinoff and R. Weitzenkamp, <a href="http://deepblue.lib.umich.edu/bitstream/2027.42/33904/1/0000169.pdf">On the existence of compound perfect squared squares of small order</a>, J. Combin. Theory Ser. B 14 (1973).163-179. [A compound perfect squared square must contain at least 22 subsquares.]
%H A014530 Trinity College Mathematical Society, <a href="https://www.srcf.ucam.org/tms/about-the-tms/the-squared-square/">The Squared Square</a>
%H A014530 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectSquareDissection.html">Perfect Square Dissection</a>
%H A014530 <a href="/index/Sq#squared_squares">Index entries for squared squares</a>
%e A014530 Example from _Rainer Rosenthal_, Mar 25 2021: (Start)
%e A014530 .
%e A014530      Terms   | 2  4  6  7  8 9 11 15 16 17 18 19 24 25 27 29 33 35 37 42 50
%e A014530   -------------------------------------------------------------------------
%e A014530              | <-- sort selected groups
%e A014530   -------------------------------------------------------------------------
%e A014530   (50,35,27) | .  .  .  .  . .  .  .  .  .  .  .  .  . 27  .  . 35  .  . 50
%e A014530     (8,19)   | .  .  .  .  8 .  .  .  .  .  . 19  .  .     .  .     .  .
%e A014530   (15,17,11) | .  .  .  .    . 11 15  . 17  .     .  .     .  .     .  .
%e A014530     (6,24)   | .  .  6  .    .        .     .    24  .     .  .     .  .
%e A014530   (29,25,9,2)| 2  .     .    9        .     .       25    29  .     .  .
%e A014530     (7,18)   |    .     7             .    18                 .     .  .
%e A014530      (16)    |    .                  16                       .     .  .
%e A014530      (42)    |    .                                           .     . 42
%e A014530     (4,37)   |    4                                           .    37
%e A014530      (33)    |                                               33
%e A014530   _________________________________________________________________________
%e A014530        Groups of terms selected and sorted for the Bouwkamp piling
%e A014530 .
%e A014530   The Bouwkamp code says how to pile up the squares in order to tile the square with side length 50 + 35 + 27 = 112. The procedure is beautifully animated in "Eric Weisstein's World of Mathematics" entry - see link.
%e A014530 (End)
%Y A014530 Cf. A002839, A002962, A002881, A342558 (related by the analogy between square tilings and resistor networks).
%K A014530 nonn,fini,full
%O A014530 1,1
%A A014530 _N. J. A. Sloane_
%E A014530 'Simple' removed from definition by _Geoffrey H. Morley_, Oct 17 2012