This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014552 #98 Feb 16 2025 08:32:33 %S A014552 0,0,1,1,0,0,26,150,0,0,17792,108144,0,0,39809640,326721800,0,0, %T A014552 256814891280,2636337861200,0,0,3799455942515488,46845158056515936,0, %U A014552 0,111683611098764903232,1607383260609382393152,0,0 %N A014552 Number of solutions to Langford (or Langford-Skolem) problem (up to reversal of the order). %C A014552 These are also called Langford pairings. %C A014552 2*a(n) = A176127(n) gives the number of ways of arranging the numbers 1,1,2,2,...,n,n so that there is one number between the two 1's, two numbers between the two 2's, ..., n numbers between the two n's. %C A014552 a(n) > 0 iff n == 0 or 3 (mod 4). %D A014552 Jaromir Abrham, "Exponential lower bounds for the numbers of Skolem and extremal Langford sequences," Ars Combinatoria 22 (1986), 187-198. %D A014552 M. Gardner, Mathematical Magic Show, New York: Vintage, pp. 70 and 77-78, 1978. %D A014552 M. Gardner, Mathematical Magic Show, Revised edition published by Math. Assoc. Amer. in 1989. Contains a postscript on pp. 283-284 devoted to a discussion of early computations of the number of Langford sequences. %D A014552 R. K. Guy, The unity of combinatorics, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001. %D A014552 D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 2. %D A014552 M. Krajecki, Christophe Jaillet and Alain Bui, "Parallel tree search for combinatorial problems: A comparative study between OpenMP and MPI," Studia Informatica Universalis 4 (2005), 151-190. %D A014552 Roselle, David P. Distributions of integers into s-tuples with given differences. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 31--42. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0335429 (49 #211). - From _N. J. A. Sloane_, Jun 05 2012 %H A014552 Ali Assarpour, Amotz Bar-Noy, and Ou Liuo, <a href="http://arxiv.org/abs/1507.00315">Counting the Number of Langford Skolem Pairings</a>, arXiv:1507.00315 [cs.DM], 2015. %H A014552 Gheorghe Coserea, <a href="/A014552/a014552.txt">Solutions for n=7</a>. %H A014552 Gheorghe Coserea, <a href="/A014552/a014552_1.txt">Solutions for n=8</a>. %H A014552 Gheorghe Coserea, <a href="/A014552/a014552_1.mzn.txt">MiniZinc model for generating solutions</a>. %H A014552 R. O. Davies, <a href="http://www.jstor.org/stable/3610650">On Langford's problem II</a>, Math. Gaz., 1959, vol. 43, 253-255. %H A014552 Elin Farnell, <a href="https://doi.org/10.1080/10511970.2016.1195465">Puzzle Pedagogy: A Use of Riddles in Mathematics Education</a>, PRIMUS, July 2016, pp. 202-211. %H A014552 M. Krajecki, <a href="http://dialectrix.com/langford/krajecki/krajecki-letter.html">L(2,23)=3,799,455,942,515,488</a>. %H A014552 C. D. Langford, <a href="http://www.jstor.org/stable/3610392">2781. Parallelograms with Integral Sides and Diagonals</a>, Math. Gaz., 1958, vol. 42, p. 228. %H A014552 J. E. Miller, <a href="http://dialectrix.com/langford.html">Langford's Problem</a> %H A014552 G. Nordh, <a href="http://arxiv.org/abs/math/0506155">Perfect Skolem sequences</a>, arXiv:math/0506155 [math.CO], 2005. %H A014552 Zan Pan, <a href="https://eprint.panzan.me/articles/langford.pdf">Conjectures on the number of Langford sequences</a>, (2021). %H A014552 Michael Penn, <a href="https://www.youtube.com/watch?v=jzjgMBdpvow">Why is this list "nice"? -- Langford's Problem</a>, YouTube video, 2022. %H A014552 C. J. Priday, <a href="http://www.jstor.org/stable/3610650">On Langford's Problem I</a>, Math. Gaz., 1959, vol. 43, 250-255. %H A014552 W. Schneider, <a href="http://web.archive.org/web/2004/www.wschnei.de/digit-related-numbers/langfords-problem.html">Langford's Problem</a> %H A014552 T. Skolem, <a href="http://www.mscand.dk/article/view/10490">On certain distributions of integers in pairs with given differences</a>, Math. Scand., 1957, vol. 5, 57-68. %H A014552 T. Saito and S. Hayasaka, <a href="http://www.jstor.org/stable/3618042">Langford sequences: a progress report</a>, Math. Gaz., 1979, vol. 63, #426, 261-262. %H A014552 J. E. Simpson, <a href="http://dx.doi.org/10.1016/0012-365X(83)90008-0">Langford Sequences: perfect and hooked</a>, Discrete Math., 1983, vol. 44, #1, 97-104. %H A014552 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LangfordsProblem.html">Langford's Problem</a>. %F A014552 a(n) = A176127(n)/2. %e A014552 Solutions for n=3 and 4: 312132 and 41312432. %e A014552 Solution for n=16: 16, 14, 12, 10, 13, 5, 6, 4, 15, 11, 9, 5, 4, 6, 10, 12, 14, 16, 13, 8, 9, 11, 7, 1, 15, 1, 2, 3, 8, 2, 7, 3. %Y A014552 See A050998 for further examples of solutions. %Y A014552 If the zeros are omitted we get A192289. %Y A014552 Cf. A059106, A059107, A059108, A125762, A026272. %K A014552 nonn,hard,nice,more %O A014552 1,7 %A A014552 John E. Miller (john@timehaven.us), _Eric W. Weisstein_, _N. J. A. Sloane_ %E A014552 a(20) from Ron van Bruchem and Mike Godfrey, Feb 18 2002 %E A014552 a(21)-a(23) sent by John E. Miller (john@timehaven.us) and Pab Ter (pabrlos(AT)yahoo.com), May 26 2004. These values were found by a team at Université de Reims Champagne-Ardenne, headed by Michael Krajecki, using over 50 processors for 4 days. %E A014552 a(24)=46845158056515936 was computed circa Apr 15 2005 by the Krajecki team. - _Don Knuth_, Feb 03 2007 %E A014552 Edited by _Max Alekseyev_, May 31 2011 %E A014552 a(27) from the J. E. Miller web page "Langford's problem"; thanks to _Eric Desbiaux_ for reporting this. - _N. J. A. Sloane_, May 18 2015. However, it appears that the value was wrong. - _N. J. A. Sloane_, Feb 22 2016 %E A014552 Corrected and extended using results from the Assarpour et al. (2015) paper by _N. J. A. Sloane_, Feb 22 2016 at the suggestion of _William Rex Marshall_.