This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014586 #44 Jun 06 2022 11:16:46 %S A014586 0,1,0,1,2,0,1,0,1,2,0,1,0,1,2,0,1,0,1,2,0,1,0,1,2,3,2,3,4,5,3,2,3,4, %T A014586 0,1,2,3,2,0,1,2,3,2,0,1,2,3,2,3,4,5,0,1,3,4,5,0,1,3,4,5,0,1,3,0,1,0, %U A014586 1,2,4,3,0,1,5,6,2,3,4,5,6,2,3,4,5,0,1,6,3,2,4,2,6,4,5,0,1,6,4 %N A014586 Nim-Grundy function for Take-a-Square (or Subtract-a-Square) game. %C A014586 Concerning the January 1997 dissertation of Achim Flammenkamp, his home page (currently http://wwwhomes.uni-bielefeld.de/cgi-bin/cgiwrap/achim/index.cgi) has the link shown below, and a comment that a book was published in July 1997 by Hans-Jacobs-Verlag, Lage, Germany with the title Lange Perioden in Subtraktions-Spielen (ISBN 3-932136-10-1). This is an enlarged study (more than 200 pages) of his dissertation. - _N. J. A. Sloane_, Jul 25 2019 %D A014586 R. K. Guy, Unsolved Problems in Number Theory, E26. %D A014586 W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 12th Edition. %H A014586 Eric M. Schmidt, <a href="/A014586/b014586.txt">Table of n, a(n) for n = 0..10000</a> (corrected by _Eric M. Schmidt_, Apr 23 2019) %H A014586 David Eppstein, <a href="https://arxiv.org/abs/1804.06515">Faster Evaluation of Subtraction Games</a>, Proceedings of the 9th International Conference on Fun with Algorithms (FUN 2018), Leibniz International Proceedings in Informatics, arXiv:1804.06515 [cs.DS], 2018. %H A014586 Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/~achim/diss.ps.gz">Lange Perioden in Subtraktions-Spielen</a>, Dissertation, Dept. Math., University of Bielefeld, Germany. %H A014586 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a014/A014586.java">Java program</a> (github) %H A014586 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_theorem">Sprague-Grundy theorem</a> %F A014586 a(n) = 0 iff n belongs to A030193. - _Rémy Sigrist_, May 30 2019 %o A014586 (Sage) %o A014586 def A014586_list(max) : %o A014586 res = [] %o A014586 for i in range(max+1) : %o A014586 moves = list({res[i-r^2] for r in range(1, isqrt(i)+1)}) %o A014586 moves.sort() %o A014586 k = len(moves) %o A014586 mex = next((j for j in range(k) if moves[j] != j), k) %o A014586 res.append(mex) %o A014586 return res %o A014586 A014586_list(100) %o A014586 # _Eric M. Schmidt_, Jul 20 2013, corrected _Eric M. Schmidt_, Apr 23 2019 %Y A014586 Cf. A030193, A014587-A014589, A297963. %K A014586 nonn %O A014586 0,5 %A A014586 _Achim Flammenkamp_