This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014595 #37 Jul 21 2018 12:21:13 %S A014595 1,1,2,3,6,10,19,33,60,104,184,316,548,931,1588,2676,4511,7539,12590, %T A014595 20890,34603,57036,93804,153655,251109,408961,664467,1076398,1739660, %U A014595 2804166,4510035,7236242,11585908,18509442,29511312,46957178,74575323,118213424,187052097,295453415 %N A014595 Conjectured dimensions of spaces of weight systems of chord diagrams. %C A014595 First 13 terms agree with A007473, next terms obtained from A014605. %H A014595 D. Bar-Natan, <a href="https://doi.org/10.1016/0040-9383(95)93237-2">On the Vassiliev Knot Invariants</a>, Topology 34 (1995) 423-472. %H A014595 D. Bar-Natan, <a href="http://www.pdmi.ras.ru/~duzhin/VasBib/">Bibliography of Vassiliev Invariants</a>. %H A014595 Birman, Joan S., <a href="https://doi.org/10.1090/S0273-0979-1993-00389-6">New points of view in knot theory</a>, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287. %H A014595 D. J. Broadhurst, <a href="https://arxiv.org/abs/q-alg/9709031"> Conjectured enumeration of Vassiliev invariants</a>, arXiv:q-alg/9709031, 1997 [different conjectured values]. %H A014595 Jan Kneissler, <a href="https://arxiv.org/abs/q-alg/9706022">The number of primitive Vassiliev invariants of degree up to 12</a>, arXiv:q-alg/9706022, 1997. %H A014595 <a href="/index/K#knots">Index entries for sequences related to knots</a> %F A014595 G.f.: Product_{ m >= 1 } (1-y^m)^(-A014605(m)). - _Andrey Zabolotskiy_, Sep 15 2017 %t A014595 terms = 40; QP = QPochhammer; A014605 = Join[{1, 0, 0, 0}, CoefficientList[ QP[q^4]/QP[q] + O[q]^terms, q]] // Accumulate; %t A014595 gf = Product[(1 - y^m)^(-A014605[[m+1]]), {m, 1, terms}] + O[y]^terms; %t A014595 CoefficientList[gf, y] (* _Jean-François Alcover_, Jul 21 2018 *) %Y A014595 Cf. A014605 (conjectured to agree with A007478), A014596 (first differences, conjectured to agree with A007293). This sequences is conjectured to agree with A007473. All these (equivalent) conjectures are probably wrong since Jan Kneissler states that A007478(13) >= 78 (see A007478), while A014605(13)=77. %K A014595 nonn %O A014595 0,3 %A A014595 _David Broadhurst_ %E A014595 More terms from _Joerg Arndt_, Sep 19 2017