This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014596 #22 Aug 24 2023 13:42:18 %S A014596 1,0,1,1,3,4,9,14,27,44,80,132,232,383,657,1088 %N A014596 Conjectured numbers of Vassiliev invariants of knots. %H A014596 Dror Bar-Natan, <a href="https://www.math.toronto.edu/~drorbn/papers/OnVassiliev/">On the Vassiliev Knot Invariants</a>, Topology 34 (1995) 423-472. %H A014596 Dror Bar-Natan, <a href="https://www.math.toronto.edu/~drorbn/VasBib/VasBib.html">Bibliography of Vassiliev Invariants</a> %H A014596 Joan S. Birman, <a href="https://doi.org/10.1090/S0273-0979-1993-00389-6">New points of view in knot theory</a>, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287. %H A014596 Jan Kneissler, <a href="https://arxiv.org/abs/q-alg/9706022">The number of primitive Vassiliev invariants of degree up to 12</a>, arXiv:q-alg/9706022, 1997. %H A014596 Evert Stenlund, <a href="http://www.evertstenlund.se/knots/On%20the%20Vassiliev%20Invariant.pdf">On the Vassiliev Invariants</a>, June 2017. %H A014596 <a href="/index/K#knots">Index entries for sequences related to knots</a> %Y A014596 First 13 terms agree with A007293, next 3 obtained from differences of A014595. %K A014596 nonn %O A014596 0,5 %A A014596 _David Broadhurst_