cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014621 Triangle of numbers arising from analysis of Levine's sequence A011784.

This page as a plain text file.
%I A014621 #89 Feb 16 2024 20:49:58
%S A014621 1,1,3,1,15,10,3,1,105,105,55,30,10,3,1,945,1260,910,630,350,168,76,
%T A014621 30,10,3,1,10395,17325,15750,12880,9135,5789,3381,1806,910,434,196,76,
%U A014621 30,10,3,1,135135,270270,294525,275275,228375,172200,120960,78519,48006,28336,16065,8609,4461,2166,1018,470,196,76,30,10,3,1
%N A014621 Triangle of numbers arising from analysis of Levine's sequence A011784.
%H A014621 Roland Miyamoto, <a href="/A014621/b014621.txt">Rows n = 1..50 of triangle, flattened</a> (rows n = 1..6 from _Colin Mallows_)
%H A014621 Roland Miyamoto, <a href="/A014621/a014621_1.txt">Comments on A014621</a>, Oct 14 2022.
%H A014621 Roland Miyamoto and J. W. Sander, <a href="https://doi.org/10.1007/978-3-031-31617-3_14">Solving the iterative differential equation -gamma*g' = g^{-1}</a>, in: H. Maier, J. & R. Steuding (eds.), <a href="https://doi.org/10.1007/978-3-031-31617-3">Number Theory in Memory of Eduard Wirsing</a>, Springer, 2023, pp. 223-236, <a href="https://link.springer.com/chapter/10.1007/978-3-031-31617-3_14">alternative link</a>.
%H A014621 Roland Miyamoto, <a href="https://timebrain.org/Levine/a014621.py">Python3 program a014621.py</a> implementing below formulae.
%H A014621 Roland Miyamoto, <a href="https://arxiv.org/abs/2402.06618">Polynomial parametrisation of the canonical iterates to the solution of -gamma*g' = g^(-1)</a>, arXiv:2402.06618 [math.CO], 2024.
%F A014621 From _Roland Miyamoto_, Nov 20 2022: (Start)
%F A014621 The n-th row contains 1 + (n-1)*(n-2)/2 numbers a(n,k), where n >= 1 and k = 0..(n-1)*(n-2)/2.
%F A014621 Let f be a solution to the iterative differential equation f(f(x))*f'(x) = -1 defined on some nonnegative interval and let tau=f(tau) be a fixed point of f. Then the n-th derivative of f at tau is
%F A014621   f^{(n)}(tau) = Sum_{k=0..(n-1)*(n-2)/2} (-1)^(n+k)*a(n,k)*tau^(2-3*n-k).
%F A014621 Thus, a(n,k) can be calculated recursively using the equations
%F A014621   0 = (f ° f * f')^{(n)} = Sum_{k=0..n} binomial(n,k) (f ° f)^{(n-k)}*f^{(k+1)} for n=1,2,... (End)
%e A014621 Triangle begins:
%e A014621     1;
%e A014621     1;
%e A014621     3,    1;
%e A014621    15,   10,   3,   1;
%e A014621   105,  105,  55,  30,  10,   3,  1;
%e A014621   945, 1260, 910, 630, 350, 168, 76, 30, 10, 3, 1;
%e A014621 10395, 17325, 15750, 12880, 9135, 5789, 3381, 1806, 910, 434, 196, 76, 30,
%e A014621   10, 3, 1;
%e A014621 135135, 270270, 294525, 275275, 228375, 172200, 120960, 78519, 48006, 28336, 16065, 8609, 4461, 2166, 1018, 470, 196, 76, 30, 10, 3, 1;
%e A014621 2027025, 4729725, 5990985, 6276270, 5853925, 4996530, 3999765, 2997225, 2115960, 1432725, 938644, 593646, 364551, 215940, 123639, 68886, 37276, 19485, 9959, 4911, 2301, 1063, 470, 196, 76, 30, 10, 3, 1;
%o A014621 (Python) # See Miyamoto link.
%Y A014621 Cf. A011784, A014622 (row sums), A144006.
%K A014621 tabf,nonn
%O A014621 1,3
%A A014621 _Colin Mallows_
%E A014621 More terms from _Roland Miyamoto_, Nov 20 2022
%E A014621 Offset corrected by _Max Alekseyev_, Sep 19 2023