This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014772 #17 Sep 01 2025 16:54:04 %S A014772 36,784,4356,14400,36100,76176,142884,246016,396900,608400,894916, %T A014772 1272384,1758276,2371600,3132900,4064256,5189284,6533136,8122500, %U A014772 9985600,12152196,14653584,17522596,20793600,24502500,28686736 %N A014772 Squares of even hexagonal numbers. %H A014772 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A014772 G.f.: 4*x*(9+151*x+199*x^2+25*x^3)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009 %F A014772 a(1)=36, a(2)=784, a(3)=4356, a(4)=14400, a(5)=36100, a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - _Harvey P. Dale_, May 11 2012 %t A014772 Take[Table[n(2n-1),{n,60}],{2,-1,2}]^2 (* or *) LinearRecurrence[ {5,-10,10,-5,1},{36,784,4356,14400,36100},30] (* _Harvey P. Dale_, May 11 2012 *) %Y A014772 Cf. A014635. %K A014772 nonn,easy,changed %O A014772 1,1 %A A014772 _Mohammad K. Azarian_ %E A014772 G.f. proposed by Maksym Voznyy checked and corrected by _R. J. Mathar_, Sep 16 2009 %E A014772 More terms from _Erich Friedman_