This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014986 #40 Feb 07 2024 12:30:02 %S A014986 1,-4,21,-104,521,-2604,13021,-65104,325521,-1627604,8138021, %T A014986 -40690104,203450521,-1017252604,5086263021,-25431315104,127156575521, %U A014986 -635782877604,3178914388021,-15894571940104,79472859700521 %N A014986 a(n) = (1 - (-5)^n)/6. %C A014986 q-integers for q = -5. %C A014986 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - _Milan Janjic_, Jan 27 2010 %H A014986 Vincenzo Librandi, <a href="/A014986/b014986.txt">Table of n, a(n) for n = 1..1000</a> %H A014986 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-4,5). %F A014986 a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1). %F A014986 G.f.: x/((1-x)*(1+5*x)). - _Bruno Berselli_, Dec 07 2011 %F A014986 a(n) = -4*a(n-1) + 5*a(n-2). - _Vincenzo Librandi_, Jun 19 2012 %F A014986 E.g.f.: (exp(x) - exp(-5*x))/6. - _G. C. Greubel_, May 26 2018 %p A014986 a:=n->sum ((-5)^j, j=0..n): seq(a(n), n=0..25); # _Zerinvary Lajos_, Dec 16 2008 %t A014986 LinearRecurrence[{-4,5},{1,-4},30] (* _Vincenzo Librandi_, Jun 19 2012 *) %o A014986 (Sage) [gaussian_binomial(n,1,-5) for n in range(1,22)] # _Zerinvary Lajos_, May 28 2009 %o A014986 (PARI) a(n)=(1-(-5)^n)/6 \\ _Charles R Greathouse IV_, Dec 07 2011 %o A014986 (Magma) I:=[1, -4]; [n le 2 select I[n] else -4*Self(n-1)+5*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 19 2012 %Y A014986 Cf. A077925, A014983, A014985, A014987, A014989, A014990, A014991, A014992, A014993, A014994. %K A014986 sign,easy %O A014986 1,2 %A A014986 _Olivier Gérard_ %E A014986 Better name from _Ralf Stephan_, Jul 14 2013