This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015052 #44 Feb 16 2025 08:32:33 %S A015052 1,2,3,2,5,6,7,2,3,10,11,6,13,14,15,2,17,6,19,10,21,22,23,6,5,26,3,14, %T A015052 29,30,31,2,33,34,35,6,37,38,39,10,41,42,43,22,15,46,47,6,7,10,51,26, %U A015052 53,6,55,14,57,58,59,30,61,62,21,4,65,66,67,34,69,70,71,6,73,74,15,38,77,78 %N A015052 a(n) is the smallest positive integer m such that m^5 is divisible by n. %C A015052 A multiplicative companion function n/a(n) = 1,1,1,2,1,1,1,4,3,1,1,2,1,1,1,8,1,... can be defined using the 5th instead of the 4th power in A000190, which differs from A000190 and also from A003557. - _R. J. Mathar_, Jul 14 2012 %H A015052 Amiram Eldar, <a href="/A015052/b015052.txt">Table of n, a(n) for n = 1..10000</a> %H A015052 Henry Bottomley, <a href="http://fs.gallup.unm.edu/Bottomley-Sm-Mult-Functions.htm">Some Smarandache-type multiplicative sequences</a>. %H A015052 Kevin A. Broughan, <a href="http://www.math.waikato.ac.nz/~kab/papers/div4.pdf">Restricted divisor sums</a>, Acta Arithmetica, 101(2) (2002), 105-114. %H A015052 Kevin A. Broughan, <a href="https://doi.org/10.4064/aa101-2-2">Restricted divisor sums</a>, Acta Arithmetica, 101(2) (2002), 105-114. %H A015052 Kevin A. Broughan, <a href="http://ijpam.eu/contents/2003-5-3/2/2.pdf">Relationship between the integer conductor and k-th root functions</a>, Int. J. Pure Appl. Math. 5(3) (2003), 253-275. %H A015052 Kevin A. Broughan, <a href="https://www.thebookshelf.auckland.ac.nz/document.php?wid=2937">Relaxations of the ABC Conjecture using integer k'th roots</a>, New Zealand J. Math. 35(2) (2006), 121-136. %H A015052 Henry Ibstedt, <a href="http://www.gallup.unm.edu/~smarandache/Ibstedt-surfing.pdf">Surfing on the Ocean of Numbers</a>, Erhus Univ. Press, Vail, 1997. %H A015052 Florentin Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/CP2.pdf">Collected Papers, Vol. II</a>, Tempus Publ. Hse, Bucharest, 1996. %H A015052 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmarandacheCeilFunction.html">Smarandache Ceil Function</a>. %F A015052 Multiplicative with a(p^e) = p^(ceiling(e/5)). - _Christian G. Bower_, May 16 2005 %F A015052 Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(9)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6 + 1/p^7 - 1/p^8) = 0.3523622369... . - _Amiram Eldar_, Oct 27 2022 %t A015052 f[p_, e_] := p^Ceiling[e/5]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 18 2020 *) %o A015052 (PARI) a(n) = my(f=factor(n)); for (i=1, #f~, f[i,2] = ceil(f[i,2]/5)); factorback(f); \\ _Michel Marcus_, Feb 15 2015 %Y A015052 Cf. A000188 (inner square root), A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015053 (outer 6th root). %Y A015052 Cf. A013667. %K A015052 nonn,mult,easy %O A015052 1,2 %A A015052 R. Muller %E A015052 Corrected by _David W. Wilson_, Jun 04 2002 %E A015052 Name reworded by _Jon E. Schoenfield_, Oct 28 2022