This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015084 #79 Nov 17 2019 09:28:49 %S A015084 1,1,4,43,1252,104098,25511272,18649337311,40823535032644, %T A015084 267924955577741566,5274102955963545775864, %U A015084 311441054994969341088610030,55171471477692117486494217498280 %N A015084 Carlitz-Riordan q-Catalan numbers for q=3. %C A015084 Limit_{n->inf} a(n)/3^((n-1)(n-2)/2) = Product{k>=1} 1/(1-1/3^k) = 1.785312341998534190367486296013703535718796... - _Paul D. Hanna_, Jan 24 2005 %C A015084 It appears that the Hankel transform is 3^A002412(n). - _Paul Barry_, Aug 01 2008 %C A015084 Hankel transform of the aerated sequence is 3^C(n+1,3). - _Paul Barry_, Oct 31 2008 %H A015084 Seiichi Manyama, <a href="/A015084/b015084.txt">Table of n, a(n) for n = 0..65</a> %H A015084 Robin Sulzgruber, <a href="https://doi.org/10.25365/thesis.30616">The Symmetry of the q,t-Catalan Numbers</a>, Thesis, University of Vienna, 2013. %F A015084 a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=3 and a(0)=1. %F A015084 G.f. satisfies: A(x) = 1/(1-x*A(3*x)) = 1/(1-x/(1-3*x/(1-3^2*x/(1-3^3*x/(1-...))))) (continued fraction). - _Paul D. Hanna_, Jan 24 2005 %F A015084 a(n) = the upper left term in M^n, M an infinite production matrix as follows: %F A015084 1, 3, 0, 0, 0, 0, ... %F A015084 1, 3, 9, 0, 0, 0, ... %F A015084 1, 3, 9, 27, 0, 0, ... %F A015084 1, 3, 9, 27, 81, 0, ... %F A015084 ... - _Gary W. Adamson_, Jul 14 2011 %F A015084 G.f.: T(0), where T(k) = 1 - x*3^k/(x*3^k - 1/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 18 2013 %e A015084 G.f. = 1 + x + 4*x^2 + 43*x^3 + 1252*x^4 + 104098*x^5 + 25511272*x^6 + ... %e A015084 From _Seiichi Manyama_, Dec 05 2016: (Start) %e A015084 a(1) = 1, %e A015084 a(2) = 3^1 + 1 = 4, %e A015084 a(3) = 3^3 + 3^2 + 2*3^1 + 1 = 43, %e A015084 a(4) = 3^6 + 3^5 + 2*3^4 + 3*3^3 + 3*3^2 + 3*3^1 + 1 = 1252. (End) %p A015084 A015084 := proc(n) %p A015084 option remember; %p A015084 if n = 1 then %p A015084 1; %p A015084 else %p A015084 add(3^(i-1)*procname(i)*procname(n-i),i=1..n-1) ; %p A015084 end if; %p A015084 end proc: # _R. J. Mathar_, Sep 29 2012 %t A015084 a[n_] := a[n] = Sum[3^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* _Robert G. Wilson v_, Dec 24 2016 *) %t A015084 m = 13; ContinuedFractionK[If[i == 1, 1, -3^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* _Jean-François Alcover_, Nov 17 2019 *) %o A015084 (PARI) a(n)=if(n==1,1,sum(i=1,n-1,3^(i-1)*a(i)*a(n-i))) \\ _Paul D. Hanna_ %o A015084 (Ruby) %o A015084 def A(q, n) %o A015084 ary = [1] %o A015084 (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}} %o A015084 ary %o A015084 end %o A015084 def A015084(n) %o A015084 A(3, n) %o A015084 end # _Seiichi Manyama_, Dec 24 2016 %Y A015084 Cf. A227543. %Y A015084 Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), this sequence (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11). %Y A015084 Column k=3 of A090182, A290759. %K A015084 nonn %O A015084 0,3 %A A015084 _Olivier Gérard_ %E A015084 More terms from _Paul D. Hanna_, Jan 24 2005 %E A015084 Offset changed to 0 by _Seiichi Manyama_, Dec 05 2016