This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015123 #11 Apr 09 2016 10:49:57 %S A015123 1,1,1,1,-9,1,1,91,91,1,1,-909,9191,-909,1,1,9091,918191,918191,9091, %T A015123 1,1,-90909,91828191,-917272809,91828191,-90909,1,1,909091,9182728191, %U A015123 917364637191,917364637191,9182728191,909091,1,1,-9090909,918273728191 %N A015123 Triangle of q-binomial coefficients for q=-10. %C A015123 May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals in the former, or row/columns in the latter, are then (k=0,...,12): A000012, A014992, A015261, A015278, A015298, A015316, A015333, A015350, A015367, A015382, A015398, A015417, A015433. - _M. F. Hasler_, Nov 04 & Nov 05 2012 %H A015123 <a href="/index/Ga#Gaussian_binomial_coefficients">Index entries related to Gaussian binomial coefficients</a>. %t A015123 Table[QBinomial[n, k, -10], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 09 2016 *) %o A015123 (PARI) T015123(n, k, q=-10)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - _M. F. Hasler_, Nov 04 2012 %Y A015123 Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - _M. F. Hasler_, Nov 04 2012 %Y A015123 Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - _M. F. Hasler_, Nov 05 2012 %K A015123 sign,tabl,easy %O A015123 0,5 %A A015123 _Olivier Gérard_