This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015235 #14 Jul 24 2021 02:30:41 %S A015235 1,0,132,192,828,1152,2796,2880,6828,5376,14904,10944,20772,18432, %T A015235 40224,25920,53964,41472,76452,58176,107784,69504,156816,101376, %U A015235 163284,131328,259032,147072,295200,206208,357480,250560,432780,269568,576072,365184,555804,426240 %N A015235 Theta series of lattice Kappa_8. %D A015235 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 161. %H A015235 Andy Huchala, <a href="/A015235/b015235.txt">Table of n, a(n) for n = 0..20000</a> %H A015235 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/KAPPA8.html">Home page for this lattice</a> %e A015235 G.f. = 1 + 132*q^4 + 192*q^6 + ... %o A015235 (Sage) %o A015235 L = [1, 0, 132, 192, 828, 1152, 2796, 2880, 6828, 5376] %o A015235 M = ModularForms(Gamma0(12),4) %o A015235 bases = [_.q_expansion(35) for _ in M.integral_basis()] %o A015235 f = sum(x*y for (x,y) in zip(bases,L)); list(f) # _Andy Huchala_, Jul 23 2021 %Y A015235 Cf. A015236 (K_7), A015233 (K_9), A015232 (K_10), A015229 (K_11), A004010 (K_12), A029897 (K_13), A047628 (K_14). %K A015235 nonn %O A015235 0,3 %A A015235 _N. J. A. Sloane_ %E A015235 More terms from _Sean A. Irvine_, Feb 26 2020