This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015249 #40 Apr 25 2025 10:28:36 %S A015249 1,3,15,55,231,903,3655,14535,58311,232903,932295,3727815,14913991, %T A015249 59650503,238612935,954429895,3817763271,15270965703,61084037575, %U A015249 244335800775,977343902151,3909374210503,15637499638215 %N A015249 Gaussian binomial coefficient [ n,2 ] for q = -2. %D A015249 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015249 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015249 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015249 G. C. Greubel, <a href="/A015249/b015249.txt">Table of n, a(n) for n = 2..500</a> %H A015249 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-8) %F A015249 G.f.: x^2/((1-x)*(1+2*x)*(1-4*x)). %F A015249 From _Vincenzo Librandi_, Mar 20 2011: (Start) %F A015249 a(n) = 5*a(n-1) - 4*a(n-2) + (-1)^n *2^(n-2), n >= 4. %F A015249 a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3), n >= 3. (End) %F A015249 a(n) = (1/18)*(4^n - 2 + (-1)^n*2^n). - _R. J. Mathar_, Mar 21 2011 %F A015249 E.g.f.: 2*exp(x)*sinh(3*x/2)^2/9. - _Stefano Spezia_, Apr 25 2025 %t A015249 Join[{a=1,b=3},Table[c=2*b+8*a+1;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 05 2011 *) %t A015249 Table[QBinomial[n, 2, -2], {n, 2, 25}] (* _G. C. Greubel_, Jul 30 2016 *) %o A015249 (Sage) [gaussian_binomial(n,2,-2) for n in range(2,25)] # _Zerinvary Lajos_, May 28 2009 %o A015249 (PARI) a(n)=(4^n - 2 + (-1)^n*2^n)/18 \\ _Charles R Greathouse IV_, Jul 30 2016 %o A015249 (Python) %o A015249 def A015249(n): return ((m:=1<<n)|1)//3*((m>>1|1)//3) # _Chai Wah Wu_, Apr 25 2025 %Y A015249 Except for initial terms, same as A084152 and A084175. %K A015249 nonn,easy %O A015249 2,2 %A A015249 _Olivier Gérard_, Dec 11 1999