This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015259 #25 Sep 08 2022 08:44:39 %S A015259 1,57,3705,236665,15150201,969583737,62053592185,3971428035705, %T A015259 254171409198201,16266970069380217,1041086085394771065, %U A015259 66629509457629850745,4264288605349394427001,272914470741872571493497 %N A015259 Gaussian binomial coefficient [ n,2 ] for q = -8. %D A015259 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015259 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015259 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015259 Vincenzo Librandi, <a href="/A015259/b015259.txt">Table of n, a(n) for n = 2..200</a> %H A015259 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (57,456,-512). %F A015259 G.f.: x^2/((1-x)*(1+8*x)*(1-64*x)). %F A015259 a(2) = 1, a(3) = 57, a(4) = 3705, a(n) = 57*a(n-1) + 456*a(n-2) - 512*a(n-3). - _Vincenzo Librandi_, Oct 27 2012 %t A015259 Table[QBinomial[n, 2, -8], {n, 2, 20}] (* _Vincenzo Librandi_, Oct 27 2012 *) %o A015259 (Sage) [gaussian_binomial(n,2,-8) for n in range(2,16)] # _Zerinvary Lajos_, May 27 2009 %o A015259 (Magma) I:=[1, 57, 3705]; [n le 3 select I[n] else 57*Self(n-1)+456*Self(n-2)-512*Self(n-3): n in [1..20]]; // _Vincenzo Librandi_, Oct 27 2012 %K A015259 nonn,easy %O A015259 2,2 %A A015259 _Olivier Gérard_, Dec 11 1999