This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015271 #25 Sep 04 2022 10:54:44 %S A015271 1,-51,3485,-219555,14107485,-901984419,57741320029,-3695215419555, %T A015271 236497451900765,-15135778281070755,968690748238618461, %U A015271 -61996192875273494691,3967756584209486471005,-253936417546335462858915 %N A015271 Gaussian binomial coefficient [ n,3 ] for q = -4. %D A015271 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015271 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015271 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015271 Vincenzo Librandi, <a href="/A015271/b015271.txt">Table of n, a(n) for n = 3..200</a> %H A015271 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-51,884,3264,-4096). %F A015271 G.f.: x^3/((1-x)*(1+4*x)*(1-16*x)*(1+64*x)). - _Bruno Berselli_, Oct 29 2012 %F A015271 a(n) = (-1 + 13*2^(4n-6) + (-1)^n*4^(n-2)*(13-2^(4n-2)))/4875. - _Bruno Berselli_, Oct 29 2012 %F A015271 a(n) = -51*a(n-1)+884*a(n-2)+3264*a(n-3)-4096*a(n-4). - _Wesley Ivan Hurt_, Sep 04 2022 %t A015271 Table[QBinomial[n, 3, -4], {n, 3, 20}] (* _Vincenzo Librandi_, Oct 28 2012 *) %o A015271 (Sage) [gaussian_binomial(n,3,-4) for n in range(3,17)] # _Zerinvary Lajos_, May 27 2009 %K A015271 sign,easy %O A015271 3,2 %A A015271 _Olivier Gérard_, Dec 11 1999