This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015281 #27 Sep 08 2022 08:44:39 %S A015281 1,-1595,2775445,-4793193515,8283038077141,-14313032243145515, %T A015281 24732928003956401365,-42738498397393357626155, %U A015281 73852125402551558141191381,-127616472670861852065241422635 %N A015281 Gaussian binomial coefficient [ n,3 ] for q = -12. %D A015281 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015281 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015281 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015281 Vincenzo Librandi, <a href="/A015281/b015281.txt">Table of n, a(n) for n = 3..200</a> %H A015281 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1595,231420,2756160,-2985984). %F A015281 a(n) = Product_{i=1..3} ((-12)^(n-i+1)-1)/((-12)^i-1) (by definition). - _Vincenzo Librandi_, Aug 02 2016 %F A015281 G.f.: x^3 / ( (x-1)*(12*x+1)*(1728*x+1)*(144*x-1) ). - _R. J. Mathar_, Aug 03 2016 %t A015281 Table[QBinomial[n, 3, -12], {n, 3, 20}] (* _Vincenzo Librandi_, Oct 28 2012 *) %o A015281 (Sage) [gaussian_binomial(n,3,-12) for n in range(3,13)] # _Zerinvary Lajos_, May 27 2009 %o A015281 (Magma) r:=3; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 02 2016 %K A015281 sign,easy %O A015281 3,2 %A A015281 _Olivier Gérard_, Dec 11 1999