This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015287 #31 Sep 08 2022 08:44:39 %S A015287 1,11,231,3311,56287,875007,14208447,225683007,3624203583,57881286463, %T A015287 926949282623,14824402656063,237244744338239,3795481554332479, %U A015287 60731179948567359,971671079497526079,15546959673214593855 %N A015287 Gaussian binomial coefficient [ n,4 ] for q = -2. %D A015287 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015287 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015287 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015287 Vincenzo Librandi, <a href="/A015287/b015287.txt">Table of n, a(n) for n = 4..800</a> %H A015287 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (11,110,-440,-704,1024). %H A015287 <a href="/index/Ga#Gaussian_binomial_coefficients">Index entries related to Gaussian binomial coefficients</a>. %F A015287 G.f.: x^4/((1-x)*(1+2*x)*(1-4*x)*(1+8*x)*(1-16*x)). - _Bruno Berselli_, Oct 30 2012 %F A015287 a(n) = (1 - 2^(2n-5)*(15-2^(2n-1)) - (-1)^n*5*2^(n-3)*(1-2^(2n-3)))/1215. - _Bruno Berselli_, Oct 30 2012 %F A015287 A015287(n) = T[n,4], where T is the triangular array A015109. - _M. F. Hasler_, Nov 04 2012 %t A015287 Table[QBinomial[n, 4, -2], {n, 4, 20}] (* _Vincenzo Librandi_, Oct 28 2012 *) %o A015287 (Sage) [gaussian_binomial(n,4,-2) for n in range(4,21)] # _Zerinvary Lajos_, May 27 2009 %o A015287 (Magma) r:=4; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 02 2016 %Y A015287 Diagonal k=4 in the triangular array A015109. See there for further references and programs. - _M. F. Hasler_, Nov 04 2012 %K A015287 nonn,easy %O A015287 4,2 %A A015287 _Olivier Gérard_, Dec 11 1999