This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015292 #20 Sep 08 2022 08:44:39 %S A015292 1,1111,1480963,1910490043,2477905585771,3210953026617931, %T A015292 4161484248724884235,5393264335151280477835,6989674736616919292088715, %U A015292 9058617560471271225871839115,11739968552378570066280405695371 %N A015292 Gaussian binomial coefficient [ n,4 ] for q = -6. %D A015292 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015292 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015292 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015292 Vincenzo Librandi, <a href="/A015292/b015292.txt">Table of n, a(n) for n = 4..300</a> %H A015292 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1111, 246642, -8879112, -51834816, 60466176). %t A015292 Table[QBinomial[n, 4, -6], {n, 4, 20}] (* _Vincenzo Librandi_, Oct 28 2012 *) %o A015292 (Sage) [gaussian_binomial(n,4,-6) for n in range(4,15)] # _Zerinvary Lajos_, May 27 2009 %o A015292 (Magma) r:=4; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 02 2016 %K A015292 nonn,easy %O A015292 4,2 %A A015292 _Olivier Gérard_, Dec 11 1999