This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015295 #25 Sep 08 2022 08:44:39 %S A015295 1,5905,39226915,257015284435,1686534296462470,11065164158125239526, %T A015295 72598678627860564552010,476319830905927777714449130, %U A015295 3125134483161392104770081009295,20504007291105533368839949866598015 %N A015295 Gaussian binomial coefficient [ n,4 ] for q = -9. %D A015295 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015295 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %D A015295 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %H A015295 Vincenzo Librandi, <a href="/A015295/b015295.txt">Table of n, a(n) for n = 4..200</a> %H A015295 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5905,4357890,-352989090,-3138159105,3486784401) %F A015295 G.f.: -x^4 / ( (x-1)*(81*x-1)*(9*x+1)*(729*x+1)*(6561*x-1) ). - _R. J. Mathar_, Aug 03 2016 %t A015295 Table[QBinomial[n, 4, -9], {n, 4, 20}] (* _Vincenzo Librandi_, Oct 28 2012 *) %o A015295 (Sage) [gaussian_binomial(n,4,-9) for n in range(4,14)] # _Zerinvary Lajos_, May 27 2009 %o A015295 (Magma) r:=4; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 02 2016 %K A015295 nonn,easy %O A015295 4,2 %A A015295 _Olivier Gérard_, Dec 11 1999