This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015298 #28 Sep 08 2022 08:44:39 %S A015298 1,9091,91828191,917364637191,9174563736547191,91744720010017447191, %T A015298 917448117456547208447191,9174480257209191175298447191, %U A015298 91744803489448201844894398447191 %N A015298 Gaussian binomial coefficient [ n,4 ] for q = -10. %D A015298 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015298 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015298 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015298 Vincenzo Librandi, <a href="/A015298/b015298.txt">Table of n, a(n) for n = 4..200</a> %H A015298 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9091,9181910,-918191000,-9091000000,10000000000). %F A015298 G.f.: -x^4 / ( (x-1)*(10*x+1)*(1000*x+1)*(100*x-1)*(10000*x-1) ). - _R. J. Mathar_, Aug 03 2016 %t A015298 Table[QBinomial[n, 4, -10], {n, 4, 20}] (* _Vincenzo Librandi_, Oct 28 2012 *) %o A015298 (Sage) [gaussian_binomial(n,4,-10) for n in range(4,13)] # _Zerinvary Lajos_, May 27 2009 %o A015298 (Magma) r:=4; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // _Vincenzo Librandi_, Aug 03 2016 %K A015298 nonn,easy %O A015298 4,2 %A A015298 _Olivier Gérard_, Dec 11 1999