This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015302 #19 Dec 07 2019 12:18:18 %S A015302 1,19141,399683221,8283038077141,171765360605672917, %T A015302 3561712204486990461397,73855689005170238163929557, %U A015302 1531471524472711661173885667797,31756593605318274408653251348629973 %N A015302 Gaussian binomial coefficient [ n,4 ] for q = -12. %D A015302 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015302 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015302 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015302 Vincenzo Librandi, <a href="/A015302/b015302.txt">Table of n, a(n) for n = 4..200</a> %H A015302 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (19141,33305340,-4795968960,-57154719744,61917364224). %F A015302 G.f.: -x^4 / ( (x-1)*(1728*x+1)*(20736*x-1)*(12*x+1)*(144*x-1) ). - _R. J. Mathar_, Aug 03 2016 %t A015302 Table[QBinomial[n, 4, -12], {n, 4, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *) %o A015302 (Sage) [gaussian_binomial(n,4,-12) for n in range(4,13)] # _Zerinvary Lajos_, May 27 2009 %K A015302 nonn,easy %O A015302 4,2 %A A015302 _Olivier Gérard_, Dec 11 1999