cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015309 Gaussian binomial coefficient [ n,5 ] for q = -5.

This page as a plain text file.
%I A015309 #26 Sep 08 2022 08:44:39
%S A015309 1,-2604,8476671,-26279294704,82254445109046,-256962886520659704,
%T A015309 803060432690378496546,-2509531719872244898534704,
%U A015309 7842306707330337276457324671,-24507195908707737696414306347204
%N A015309 Gaussian binomial coefficient [ n,5 ] for q = -5.
%D A015309 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D A015309 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D A015309 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H A015309 Vincenzo Librandi, <a href="/A015309/b015309.txt">Table of n, a(n) for n = 5..200</a>
%H A015309 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-2604,1695855,209963000,-5299546875,-25429687500,30517578125)
%F A015309 G.f.: -x^5 / ( (x-1)*(5*x+1)*(25*x-1)*(625*x-1)*(125*x+1)*(3125*x+1) ). - _R. J. Mathar_, Aug 04 2016
%t A015309 Table[QBinomial[n, 5, -5], {n, 5, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)
%o A015309 (Sage) [gaussian_binomial(n,5,-5) for n in range(5,15)] # _Zerinvary Lajos_, May 27 2009
%o A015309 (Magma) r:=5; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // _Vincenzo Librandi_, Aug 03 2016
%K A015309 sign,easy
%O A015309 5,2
%A A015309 _Olivier Gérard_, Dec 11 1999