cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015323 Gaussian binomial coefficient [ n,6 ] for q = -2.

This page as a plain text file.
%I A015323 #21 Dec 07 2019 12:18:18
%S A015323 1,43,3655,208335,14208447,882215391,57344000415,3642010817055,
%T A015323 233988483199263,14946527496991519,957498220445101855,
%U A015323 61250446192484546335,3920970870875818419999,250911985465716094666527
%N A015323 Gaussian binomial coefficient [ n,6 ] for q = -2.
%D A015323 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D A015323 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D A015323 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H A015323 Vincenzo Librandi, <a href="/A015323/b015323.txt">Table of n, a(n) for n = 6..200</a>
%H A015323 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (43,1806,-26488,-211904,924672,1409024,-2097152).
%F A015323 A015323(n) = T[n,6] where T is the triangular array A015109. - _M. F. Hasler_, Nov 04 2012
%F A015323 G.f.: x^6 / ( (x-1)*(8*x+1)*(64*x-1)*(2*x+1)*(32*x+1)*(4*x-1)*(16*x-1) ). - _R. J. Mathar_, Aug 04 2016
%t A015323 Table[QBinomial[n, 6, -2], {n, 6, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)
%o A015323 (Sage) [gaussian_binomial(n,6,-2) for n in range(6,20)] # _Zerinvary Lajos_, May 27 2009
%Y A015323 Diagonal k=6 of the triangular array A015109. See there for further references and programs. - _M. F. Hasler_, Nov 04 2012
%K A015323 nonn,easy
%O A015323 6,2
%A A015323 _Olivier Gérard_, Dec 11 1999