This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015360 #26 Sep 08 2022 08:44:39 %S A015360 1,325521,132454820421,51329529054158421,20082729571968536374671, %T A015360 7842306707330337276457324671,3063597127265150338968694860387171, %U A015360 1196702310087594273181943625299134137171,467463036580276600555969910576099571466559046 %N A015360 Gaussian binomial coefficient [ n,8 ] for q=-5. %D A015360 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015360 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015360 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015360 Vincenzo Librandi, <a href="/A015360/b015360.txt">Table of n, a(n) for n = 8..190</a> %F A015360 a(n) = Product_{i=1..8} ((-5)^(n-i+1)-1)/((-5)^i-1). - _M. F. Hasler_, Nov 03 2012 %F A015360 G.f.: -x^8 / ( (x-1)*(5*x+1)*(390625*x-1)*(25*x-1)*(625*x-1)*(78125*x+1)*(125*x+1)*(15625*x-1)*(3125*x+1) ). - _R. J. Mathar_, Sep 02 2016 %t A015360 Table[QBinomial[n, 8, -5], {n, 8, 20}] (* _Vincenzo Librandi_, Nov 03 2012 *) %o A015360 (Sage) [gaussian_binomial(n,8,-5) for n in range(8,16)] # _Zerinvary Lajos_, May 25 2009 %o A015360 (Magma) r:=8; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // _Vincenzo Librandi_, Nov 03 2012 %o A015360 (PARI) A015360(n,r=8,q=-5)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ _M. F. Hasler_, Nov 03 2012 %Y A015360 Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - _M. F. Hasler_, Nov 03 2012 %K A015360 nonn,easy %O A015360 8,2 %A A015360 _Olivier Gérard_