This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015364 #20 Sep 08 2022 08:44:39 %S A015364 1,14913081,254171409198201,4255976180162154314361, %T A015364 71420868399845502303592335993,1198206769685258176958937686297856633, %U A015364 20102650473193049559156865045854634505718393 %N A015364 Gaussian binomial coefficient [ n,8 ] for q=-8. %D A015364 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015364 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015364 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015364 Vincenzo Librandi, <a href="/A015364/b015364.txt">Table of n, a(n) for n = 8..140</a> %F A015364 a(n) = Product_{i=1..8} ((-8)^(n-i+1)-1)/((-8)^i-1). - _M. F. Hasler_, Nov 03 2012 %t A015364 Table[QBinomial[n, 8, -8], {n, 8, 15}] (* _Vincenzo Librandi_, Nov 03 2012 *) %o A015364 (Sage) [gaussian_binomial(n,8,-8) for n in range(8,15)] # _Zerinvary Lajos_, May 25 2009 %o A015364 (Magma) r:=8; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // _Vincenzo Librandi_, Nov 03 2012 %o A015364 (PARI) A015364(n, r=8, q=-8)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ _M. F. Hasler_, Nov 03 2012 %Y A015364 Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015365, A015367, A015368, A015369, A015370. - _M. F. Hasler_, Nov 03 2012 %K A015364 nonn,easy %O A015364 8,2 %A A015364 _Olivier Gérard_