This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015365 #19 Sep 08 2022 08:44:39 %S A015365 1,38742049,1688564650965445,72587599955185580267365, %T A015365 3125134483161392104770081009295, %U A015365 134524513999723596604019036560420619887,5790850118312580284352508983888376537699322083 %N A015365 Gaussian binomial coefficient [ n,8 ] for q=-9. %D A015365 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015365 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015365 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015365 Vincenzo Librandi, <a href="/A015365/b015365.txt">Table of n, a(n) for n = 8..140</a> %F A015365 a(n) = Product_{i=1..8} ((-9)^(n-i+1)-1)/((-9)^i-1). - _M. F. Hasler_, Nov 03 2012 %t A015365 Table[QBinomial[n, 8, -9], {n, 8, 15}] (* _Vincenzo Librandi_, Nov 03 2012 *) %o A015365 (Sage) [gaussian_binomial(n,8,-9) for n in range(8,14)] # _Zerinvary Lajos_, May 25 2009 %o A015365 (Magma) r:=8; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // _Vincenzo Librandi_, Nov 03 2012 %o A015365 (PARI) A015365(n, r=8, q=-9)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ _M. F. Hasler_, Nov 03 2012 %Y A015365 Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015367, A015368, A015369, A015370. - _M. F. Hasler_, Nov 03 2012 %K A015365 nonn,easy %O A015365 8,2 %A A015365 _Olivier Gérard_