This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015369 #23 Sep 08 2022 08:44:39 %S A015369 1,396906181,171855836163195541,73852125402551558141191381, %T A015369 31756593605318274408653251348629973, %U A015369 13654699102424414895934644240803700147539413,5871272644707452307243912611380074655778555267227093 %N A015369 Gaussian binomial coefficient [ n,8 ] for q=-12. %D A015369 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015369 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015369 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015369 Vincenzo Librandi, <a href="/A015369/b015369.txt">Table of n, a(n) for n = 8..100</a> %F A015369 a(n) = Product_{i=1..8} ((-12)^(n-i+1)-1)/((-12)^i-1). - _M. F. Hasler_, Nov 03 2012 %p A015369 A015369:=n->mul(((-12)^(n-i+1)-1)/((-12)^i-1), i=1..8): seq(A015369(n), n=8..20); # _Wesley Ivan Hurt_, Jan 29 2017 %t A015369 Table[QBinomial[n, 8, -12], {n, 8, 14}] (* _Vincenzo Librandi_, Nov 03 2012 *) %o A015369 (Sage) [gaussian_binomial(n,8,-12) for n in range(8,14)] # _Zerinvary Lajos_, May 24 2009 %o A015369 (Magma) r:=8; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // _Vincenzo Librandi_, Nov 03 2012 %o A015369 (PARI) A015369(n,r=8,q=-12)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ _M. F. Hasler_, Nov 03 2012 %Y A015369 Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015370. - _M. F. Hasler_, Nov 03 2012 %K A015369 nonn,easy %O A015369 8,2 %A A015369 _Olivier Gérard_