This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A015384 #19 Sep 08 2022 08:44:39 %S A015384 1,-4762874171,24747240402737283733,-127616472670861852065241422635, %T A015384 658504724872263265466971967899949697493, %U A015384 -3397726086395967282512946130260694347212577518123 %N A015384 Gaussian binomial coefficient [ n,9 ] for q=-12. %D A015384 J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. %D A015384 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. %D A015384 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. %H A015384 Vincenzo Librandi, <a href="/A015384/b015384.txt">Table of n, a(n) for n = 9..110</a> %F A015384 a(n) = Product_{i=1..9} ((-12)^(n-i+1)-1)/((-12)^i-1) (by definition). - _Vincenzo Librandi_, Nov 04 2012 %t A015384 Table[QBinomial[n, 9, -12],{n, 9, 20}] (* _Vincenzo Librandi_, Nov 04 2012 *) %o A015384 (Magma) r:=9; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Nov 04 2012 %Y A015384 Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015385. %K A015384 sign,easy %O A015384 9,2 %A A015384 _Olivier Gérard_